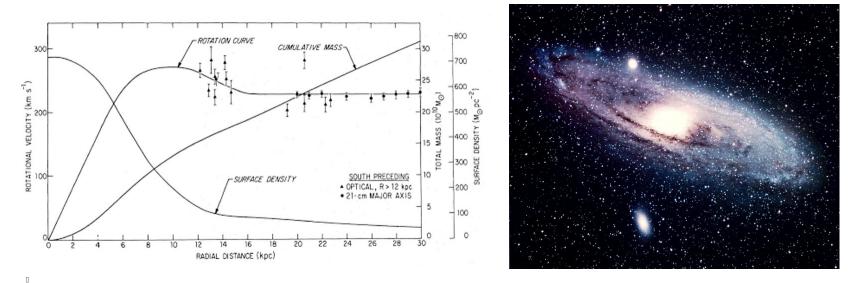


ASTROPARTICLE PHYSICS

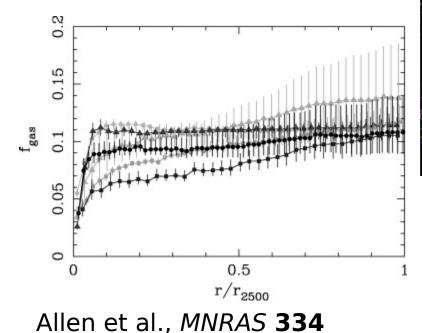
University of Sheffield

Dark Matter

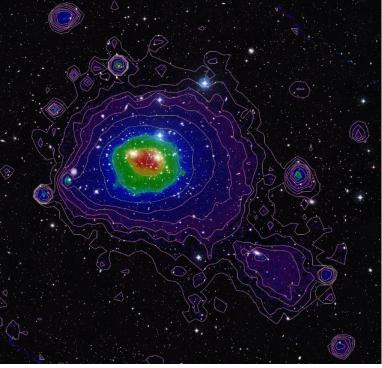

2

Astrophysical Evidence Candidates Detection

- Dynamics of rich clusters
 - Zwicky (1933!) noted that the velocities of galaxies in the Coma cluster were too high to be consistent with a bound system

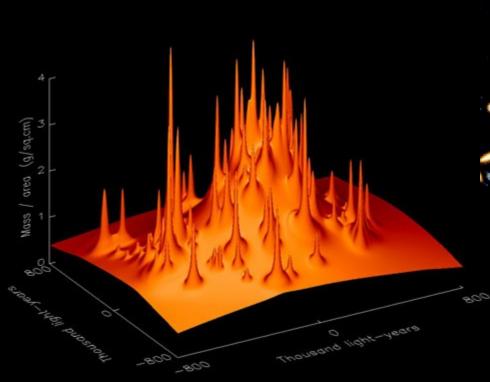


Rotation curves of spiral galaxies
 Vera Rubin (R.I.P. Dec 2016) in the 1970s



- flat at large radii: if mass traced light we would expect them to be Keplerian at large radii, $v \propto r^{-1/2}$, because the light is concentrated in the central bulge
- $\cdot\,$ and disc light falls off exponentially, not \propto r $^{-2}$
 - as required for flat rotation curve

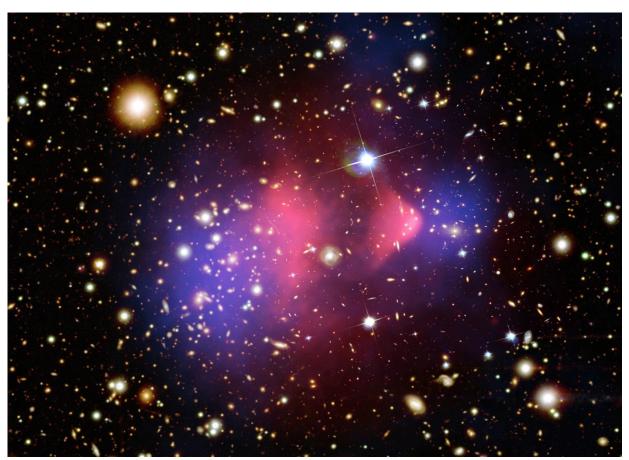
- Dynamics of rich clusters
 - mass of gas and gravitating mass can be extracted from X-ray emission from intracluster medium



(2002) L11

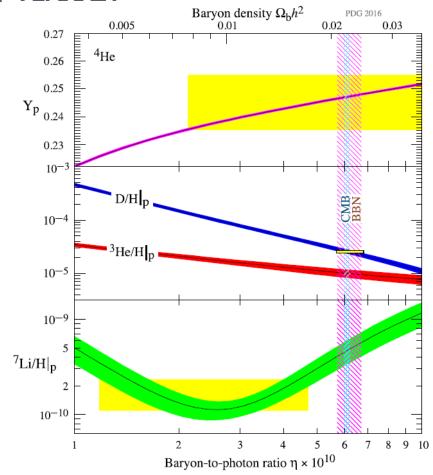
ROSAT X-ray image of Coma cluster overlaid on optical. MPI (ROSAT image); NASA/ESA/DSS2 (visible image)

Dynamics of rich clusters
 Gravitational lensing

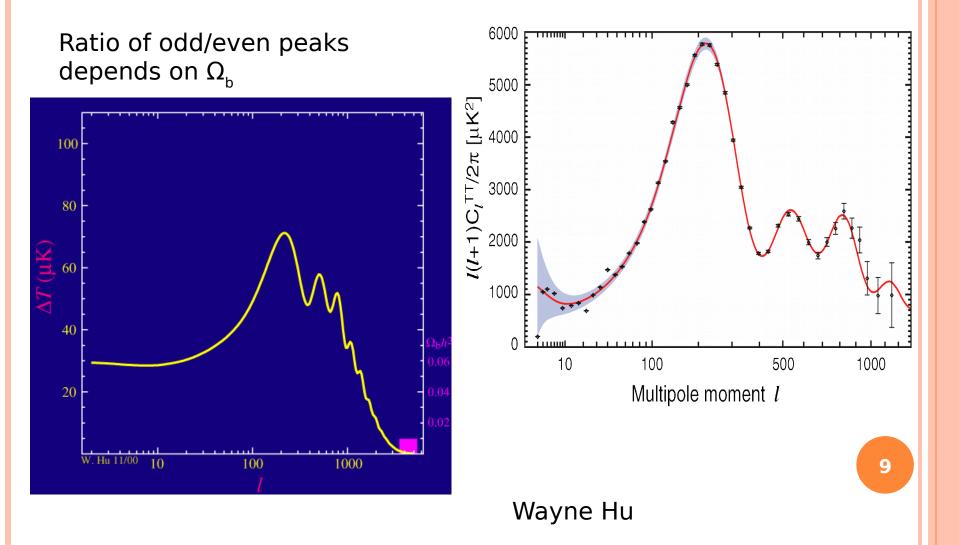

Mass map of CL0024+1654 as determined from the observed gravitational lensing. Tyson, Kochanski and Dell'Antonio, *ApJ* **498** (1998) L107

The Astrophysical Evidence: The Bullet Cluster (2006)

 Mass from lens mapping (blue) follows stars not gas (red)
 dark matter is collisionless

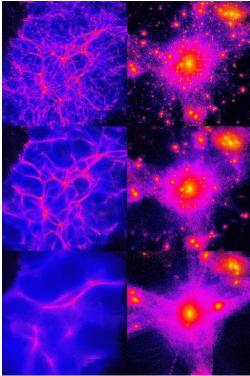

Composite Credit:

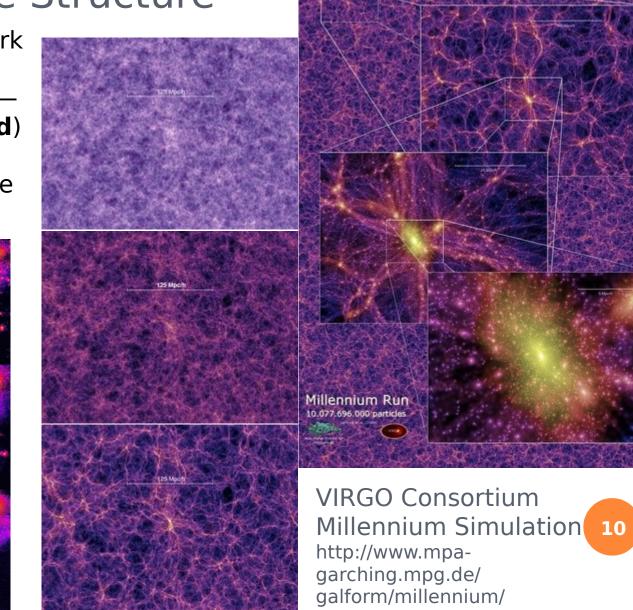
X-ray: NASA/CXC/ CfA/ M. Markevitch et al.; *Lensing Map:* NASA/STScI; ESO WFI; Magellan/ U.Arizona/ D.Clowe et al *Optical:* NASA/STScI; Magellan/ U.Arizona/ D.Clowe et al.

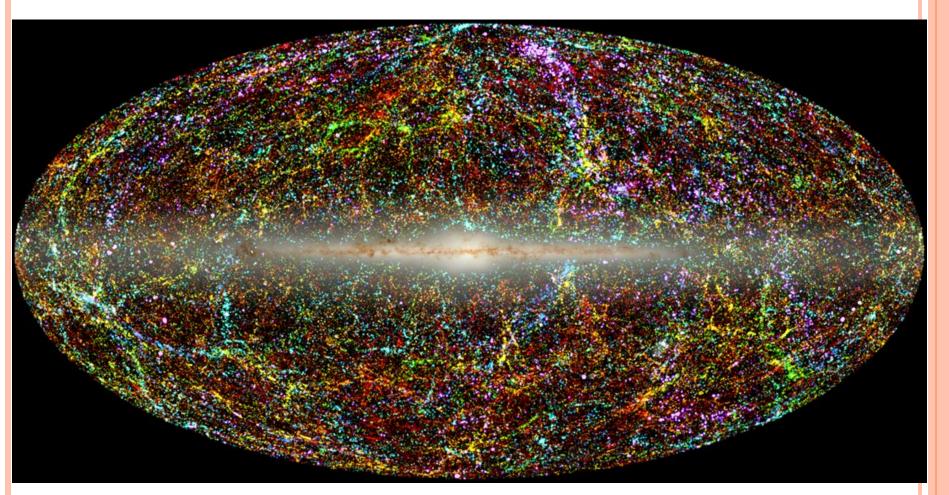


Non-Baryonic Dark Matter

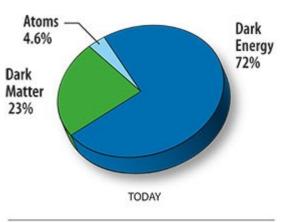
- Density of baryonic matter strongly constrained by earlyuniverse nucleosynthesis (BBN)
 - density parameter of order 0.3 as required by data from, e.g., galaxy clusters is completely inconsistent with best fit

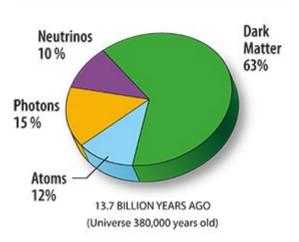


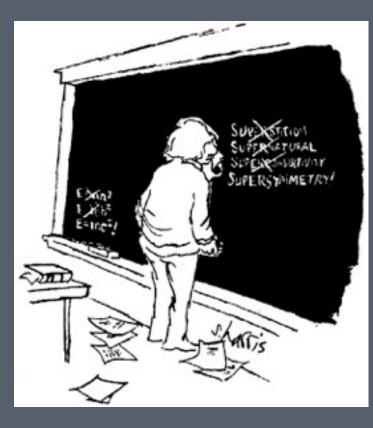

Non-Baryonic Dark Matter: Cosmology


Large Scale Structure

Relativistic (**hot**) dark matter makes structure top-down non-relativistic (**cold**) bottom-up. Real world looks like **cold** dark matter.


2MASS Galaxy Survey




Local galaxies (z < 0.1; distance coded by colour, from blue to red) Statistical studies, e.g. correlation functions, confirm visual impression that this looks much more like cold than hot dark matter

Brief Summary of Astrophysical Evidence

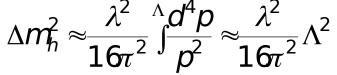
- $^{\circ}$ Many observables concur that $\Omega_{m_0} \approx 0.3$
- Most of this must be non-baryonic
- BBN and CMB concur that baryonic
 - matter contributes $\Omega_{_{b0}} \approx 0.05$
 - Bullet Cluster mass distribution
 - · indicates that dark matter is
 - · collisionless
- No Standard Model candidate
- neutrinos are too light, and are
 - "hot" (relativistic at decoupling)
 - hot dark matter does not reproduce
 - observed large-scale structure
- BSM physics

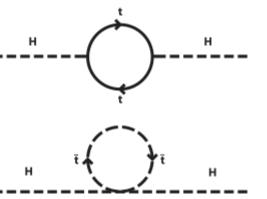
Dark Matter

Astrophysical Evidence <u>Candidates</u> Detection

Dark Matter Candidates

	WIMPs	SuperWIMPs	Light \tilde{G}	Hidden DM	Sterile v	Axions
Motivation	GHP	GHP	GHP/NPFP	GHP/NPFP	v Mass	Strong CP
Naturally Correct Ω	Yes	Yes	No	Possible	No	No
Production Mechanism	Freeze Out	Decay	Thermal	Various	Various	Various
Mass Range	GeV-TeV	GeV-TeV	eV-keV	GeV-TeV	keV	μeV -meV
Temperature	Cold	Cold/Warm	Cold/Warm	Cold/Warm	Warm	Cold
Collisional				\checkmark		
Early Universe		$\sqrt{}$		\checkmark		
Direct Detection	$\sqrt{}$			\checkmark		$\sqrt{}$
Indirect Detection	$\sqrt{}$	\checkmark		\checkmark	$\sqrt{}$	
Particle Colliders	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark		

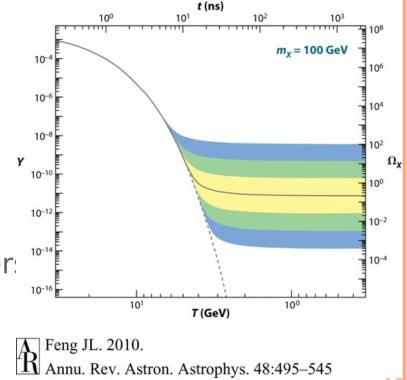

GHP = Gauge Hierarchy Problem NPFP = New Physics Flavour Problem


 $\sqrt{1}$ = possible signal; $\sqrt{1}$ = expected signal

Jonathan Feng, ARAA 48 (2010) 495 (highly recommended)

Particle Physics Motivations

 Gauge Hierarchy Problem in SM, loop corrections to Higgs mass give

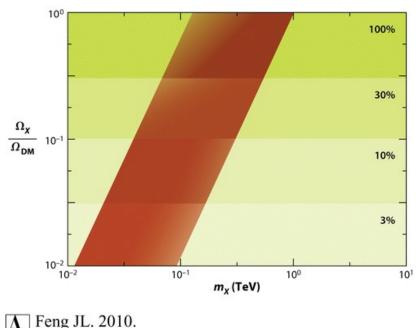


- and there is no obvious reason why $\Lambda \neq M_{\text{Pl}}$
 - supersymmetry fixes this by introducing a new set of loop corrections that cancel those from the SM
 - $^{\circ}\,$ new physics at TeV scale will also fix it (can set Λ ~ 1 TeV)
- New Physics Flavour Problem
 - we observe conservation or near-conservation of B, L, CP
 - and do not observe flavour-changing neutral currents
 - new physics has a nasty tendency to violate these
 - can require fine-tuning or new discrete symmetries, e.g. Rparity

WIMPs Weakly Interacting Massive Particles

- Produced thermally in early university
- annihilate as universe cools,
 but "freeze out" when density drops so low that annihilation
 Annihilation
 Image: Annihilation

• freeze-out occurs when $H \approx nf(\sigma_A v)$, and in radiation era we have $H \propto T2/M_{Pl}$


 $^{\circ}$ (because $ho \propto T4$ and $G \propto 1/M_{Pl}2$)

· can estimate relic density by considering freeze-out

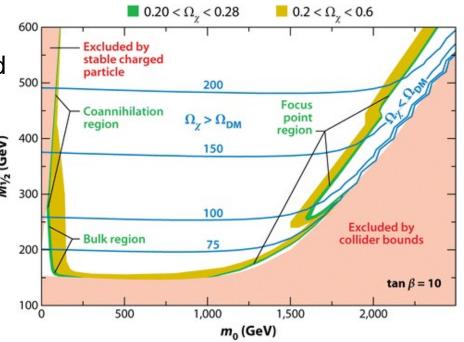
WIMP Relic Density

Converting to Ω gives: $\Omega_X = \frac{m_X n_0}{\rho_c} \approx \frac{m_X T_0^3}{\rho_c} \frac{n_f}{T_f^3} \approx \frac{x_f T_0^3}{\rho_c M_{\text{Pl}}} \langle \sigma_A V \rangle^{-1}$

- where $x_f = m_x/T_f$
 - * and typically (σ_{AV}) \propto 1/mX 2 or v $^2/mX$ 2 (S or P wave respectively)
 - Consequence: weakly interacting massive particles with electroweak-scale masses

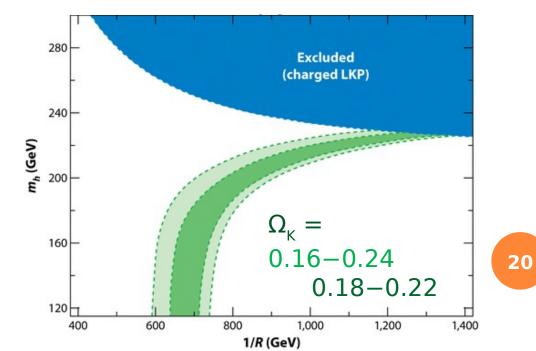
"naturally" have reasonable relic densities

 (and therefore make excellent dark matter candidates)


Supersymmetric WIMPs

- Supersymmetry solves the GHP by introducing cancelling corrections
 - predicts a complete set of new particles
 - NPFP often solved by introducing *R*-parity—new discrete quantum number
 - then lightest supersymmetric particle is stable
 - best DM candidate is lightest neutralino (mixed spartner of W⁰, B, H, h)
 - far too many free parameters in most general supersymmetric models
 - so usually consider constrained models with simplifying assumptions
 - most common constrained model: mSUGRA
 - parameters m^0 , M1/2, A^0 , tan β , sign(μ)
 - mSUGRA neutralino is probably the best studied DM candidate

SUSY WIMPs


Neutralinos are Majorana fermions and therefore self-annihilate

- \cdot Pauli exclusion principle implies that $\chi^{\scriptscriptstyle 1}\chi^{\scriptscriptstyle 1}$ annihilation prefers to go to spin 0 final state
 - prefers spin 1
- therefore annihilation
- cross-section is suppressed hence Ωχ tends to be too high parameter space very constrained by WMAP etc.

Kaluza-Klein WIMPs

- In extra-dimension models, SM particles have partners with the same spin
 - "tower" of masses separated by R^{-1} , where R is size of compactified extra dimension
 - new discrete quantum number, K-parity, implies lightest KK particle is stable
 - this is the potential
 - WIMP candidate
 - ° usually B1
 - annihilation not
 - spin-suppressed
 - (it's a boson), so
 - preferred mass
 - higher

SuperWIMPs

Massive particles with

- superweak interactions
 - produced by decay of metastable WIMP
 - because this decay is superweak, lifetime is very long $(10^3 10^7 \text{ s})$
 - WIMP may be neutralino, but could be charged particle
 - dramatic signature at LHC (stable supermassive particle)
 - · candidates:
 - weak-scale gravitino
 - ° axino
 - equivalent states in KK theories
- these particles cannot be directly detected, but indirect-detection searches and colliders may see them
 - they may also have detectable astrophysical signatures

Light Gravitinos

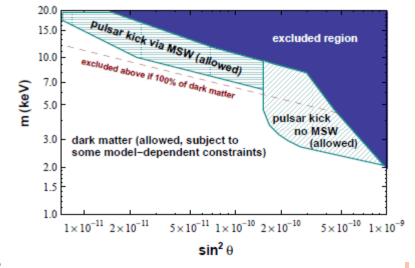
- Expected in gauge-mediated supersymmetry breaking
 - · in these models gravitino has m < 1 GeV
 - $\,\circ\,$ neutralinos decay through $\gamma_{\tilde{G}}$, so cannot be dark matter
 - gravitinos themselves are possible DM candidates
 - but tend to be too light, i.e. too warm, or too abundant
 - relic density in minimal scenario is $\Omega_{\tilde{G}} \approx 0.25 \ m_{\tilde{G}}/(100 \ \text{eV})$
 - · so require $m_{\tilde{G}} < 100$ eV for appropriate relic density
 - but require $m_{\tilde{G}} > 2$ keV for appropriate large-scale structure
 - models which avoid these problems look contrived

Kusenko, DM10

Sterile Neutrinos

Seesaw mechanism for generating small $\nu_{_{\rm I}}$ masses implies existence of

massive right-handed sterile states


V₂

- usually assumed that $M_{\rm R} \approx M_{\rm GUT}$, in which case sterile neutrinos are not viable dark matter candidates
- but smaller Yukawa couplings can combine with smaller $M_{\rm R}$ to produce observed $v_{\rm L}$ properties together with sterile neutrino at keV mass scale—viable dark matter candidate
 - such a sterile neutrino could also explain observed high velocities of pulsars (asymmetry in supernova explosion generating "kick")

 v_2

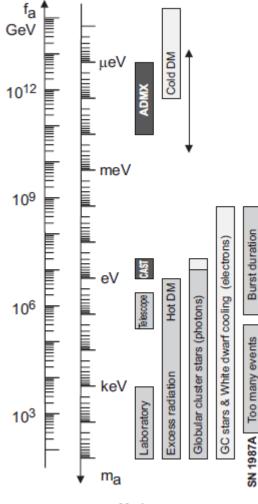
[•] these neutrinos are not entirely stable: $\tau >> 1/H^{0}$, but they do decay and can generate X-rays via loop diagrams—therefore potentially detectable by, e.g., *Chandra*

v₁

v₁

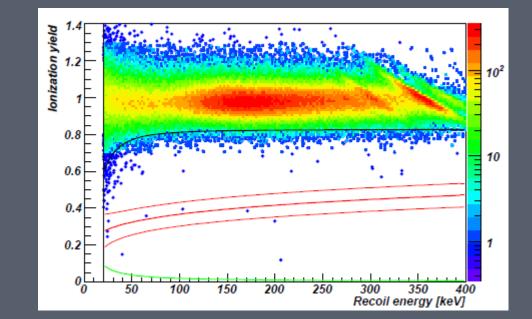
Sterile Neutrinos

Production mechanisms


- oscillation at $T \approx 100 \text{ MeV}$
 - $^{\circ}~\Omega \nu \propto sin^2$ (20) $m^{1.8}$ from numerical studies
 - always present: requires small mass and very small mixing angle
 - not theoretically motivated: some fine tuning therefore required
- resonant neutrino oscillations
 - $^{\circ}$ if universe has significant lepton number asymmetry, L > 0
- decays of heavy particles
 - $^{\circ}\,$ e.g. singlet Higgs driving sterile neutrino mass term
- Observational constraints
 - · X-ray background
 - presence of small-scale structure
 - sterile neutrinos are "warm dark matter" with Mpc free-streaming

Axions

Introduced to solve the "strong CP problem"


- SM Lagrangian includes CP-violating term which should contribute to, e.g., neutron electric dipole moment
 - neutron doesn't appear to have an EDM (<3×10⁻²⁶ e cm, cf. naïve expectation of 10⁻¹⁶) so this term is strongly suppressed
- introduce new pseudoscalar field to kill this term (Peccei-Quinn mechanism)
 - result is an associated pseudoscalar boson, the axion
- Axions are extremely light (<10 meV), but are cold dark matter
 - not produced thermally, but via phase transition in very early universe
 - if this occurs before inflation, visible universe is all in single domain
 - if after inflation, there are many domains, and topological defects such as axion domain walls and axionic strings may occur

Axions

Georg Raffelt, hep-ph/0611350v1

- Axion mass is $m_a \approx 6 \ \mu eV \times fa /(10^{12} \text{ GeV})$ where f_{a} is the unknown mass scale of the PQ mechanism Calculated relic density is $\Omega_a \approx 0.4 \ \theta^2 \ (f_a/10^{12} \text{ GeV}) 1.18$ where θ is initial vacuum misalignment \cdot so need $f_a < 10^{12}$ GeV to avoid overclosing universe astrophysical constraints require 26 $\cdot f_{a} > 10^{9} \, {\rm GeV}$
 - \cdot therefore 6 $\mu {\rm eV} < m_a^{} <$ 6 meV

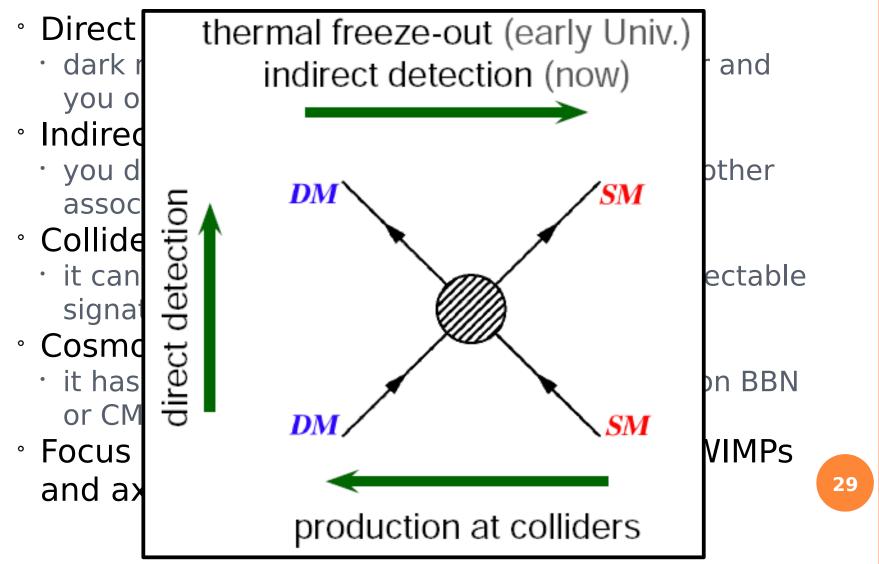
Dark Matter

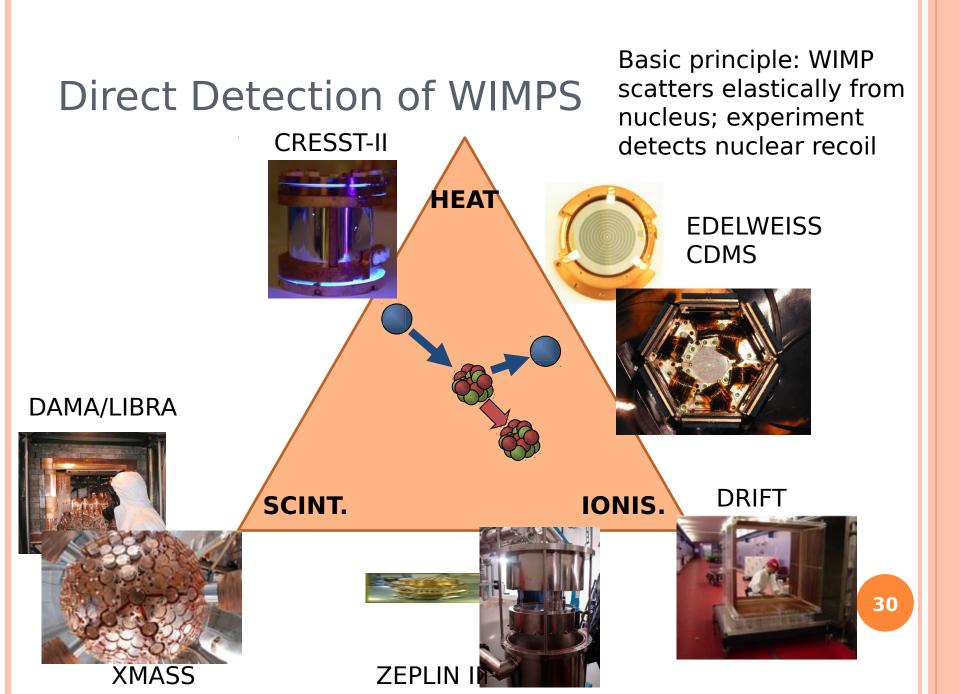
Astrophysical Evidence Candidates <u>Detection</u>

Detection of Dark Matter Candidates

Direct detection

- dark matter particle interacts in your detector and you observe it
- Indirect detection
 - you detect its decay/annihilation products or other associated phenomena


Collider phenomenology


 it can be produced at, say, LHC and has a detectable signature

Cosmology

- it has a noticeable and characteristic impact on BBN or CMB
- Focus here on best studied candidates—WIMPs and axions

Detection of Dark Matter Candidates

Backgrounds

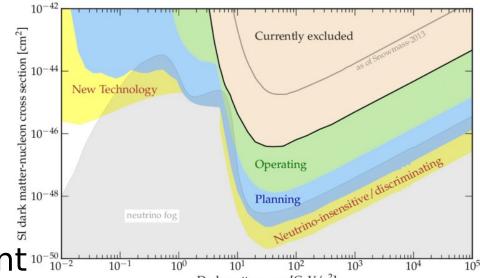
· cosmics and radioactive nuclei (especially radon)

onization yield

0.2

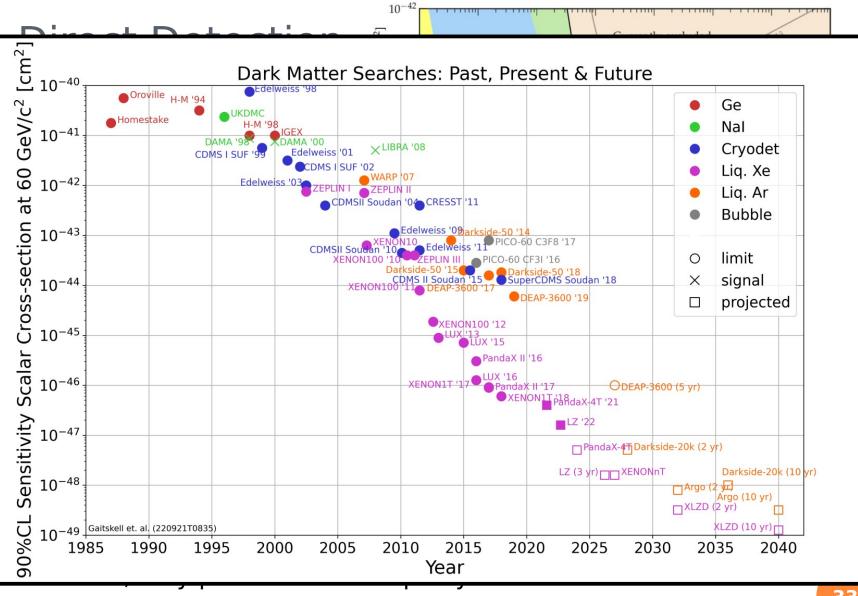
10

- use deep site and radiopure materials
- use discriminators to separate signal and background
- Time variation
- expect annual variation caused by Earth's
 - and Sun's orbital motion
 - small effect, ~7%
 - basis of claimed signal by DAMA experiment
 - much stronger diurnal variation caused by
 - changing orientation of Earth
 - "smoking gun", but requires directional detector
 - current directional detector, DRIFT, has rather small target mass (being gaseous)—hence not at leading edge of sensitivity

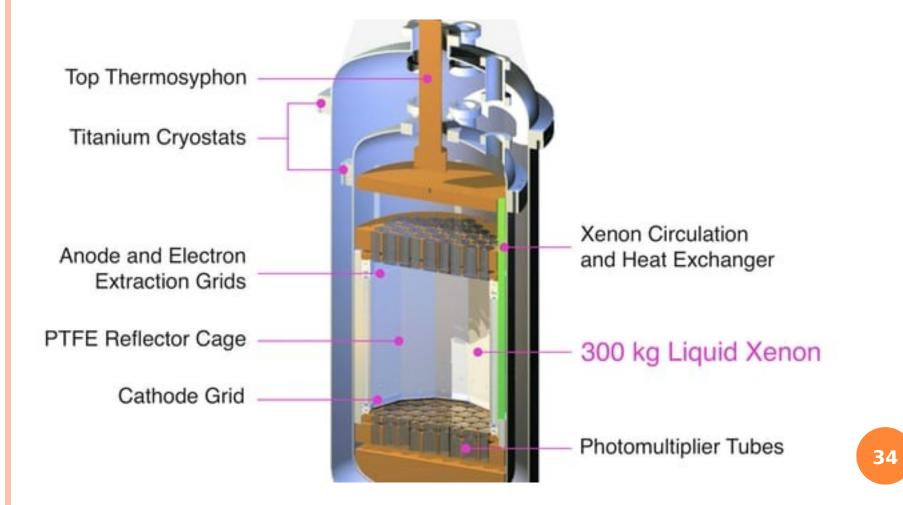

31

100

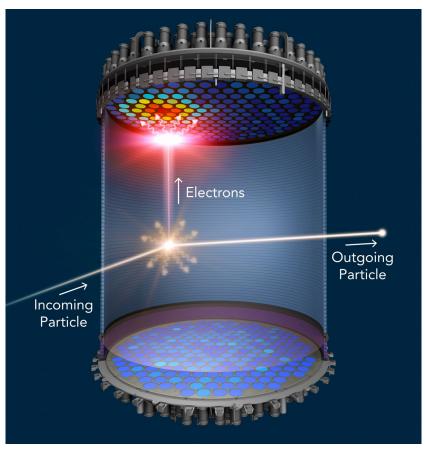
CDMS-II,

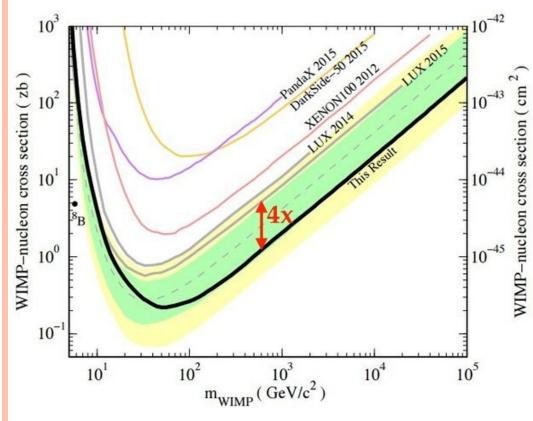

PRL **106**

(2011) 131302



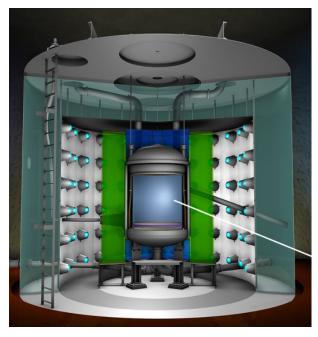
Interaction with nuclei $\frac{1}{5}$ can be spin-independent 10^{-50} $\frac{10^{-50}}{10^{-2}}$ $\frac{10^{-1}}{10^{-1}}$ $\frac{10^{3}}{10^{1}}$ $\frac{10^{3}}{10^{2}}$ $\frac{10^{3}}{10^{4}}$ $\frac{10^{4}}{10^{4}}$ $\frac{10^{4}}{1$

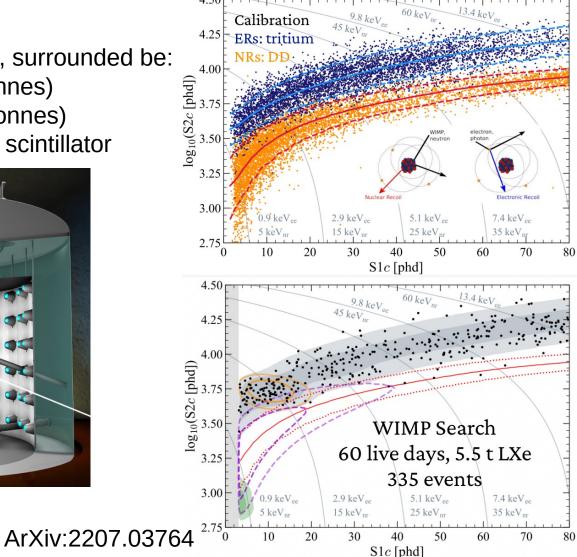

- spin-dependent interactions require nucleus with net spin
- most direct detection experiments focus on SI, and limits are much better in this case
- [°] Conflict between DAMA and others!
 - Tricky to resolve
 - requires very low mass and high cross-section
 - [°] if real, may point to a non-supersymmetric DM candidate

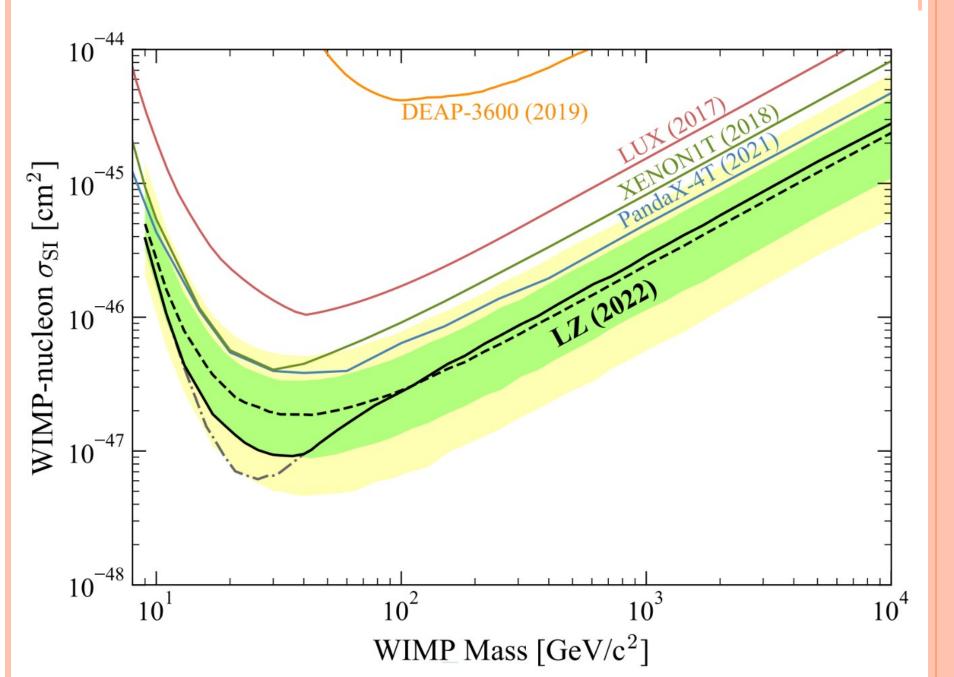


- Steps to detection:
- 1. Collisions deposit energy in liquid $Xe \rightarrow flash of light$
- 1.Electromagnetic backgrounds produce electrons that drift to the gas phase Xe at the top
 - \rightarrow second flash of light
- 1.Nuclear recoils (like WIMPS) do not produce electrons, so only one flash is seen

From IDM2016



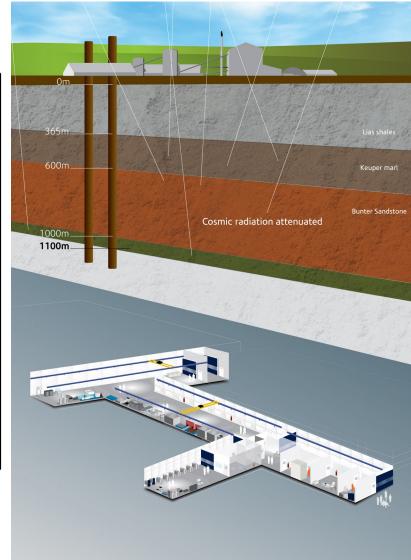

- Currently, leading results at most WIMP masses come from LXe experiments (LUX, XENON, PandaX)
- Results shown here were presented in July 2016 in **Sheffield** at the Identification of Dark Matter 20th anniv. International conference
- No signal... but rules out false claims by other experiments
- LUX is now finished, and the next generation of experiments has just begun, for example:


LUX-Zeplin in South Dakota ³⁶ → See next slide

LZ is:

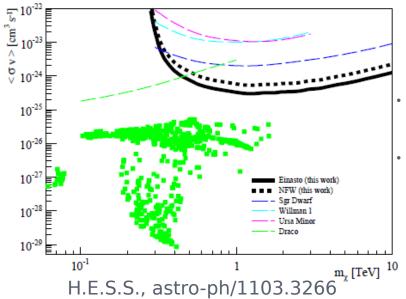
- 7 tonne LXe target, surrounded be:
- Gamme veto (2 tonnes)
- Neutron veto (17 tonnes)
 - Gd-loaded liquid scintillator

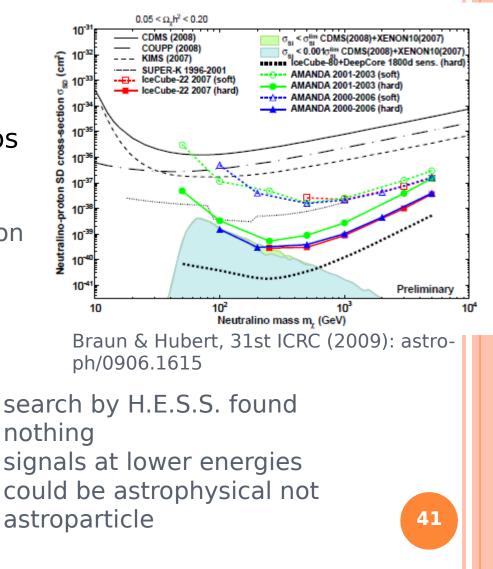
Direct Detection of WIMPs: The Future – XLZD


XLZD@BOULBY: HOSTING THE DEFINITIVE UNDERGROUND RARE-EVENT OBSERVATORY IN THE UK

M. Agostini,¹ H. M. Araújo,² M. Borri,³ A. Boston,⁴ J. Brooke,³ S. Burdin,⁴ X. Calmet,⁶ G. Casse,⁴
 J. Coleman,⁴ D. Colling,² G. J. Davies,² A. De Santo,⁶ J. Dobson,⁷ J. Ellis,⁷ M. Fairbairn,⁷ H. Flaccher,⁵ H. Fox,⁸
 C. Frenk,⁹ C. Ghag,¹ A. Green,¹⁰ J. Hays,¹¹ A. Kaboth,¹² A. Khan,¹³ L. L. Kormos,⁸ H. Kraus,¹⁴ V. A. Kudryavtsev,¹⁵
 P. Kyberd,¹³ M. Labiche,³ I. Lazarus,³ P. A. Majewski,¹⁶ M. Malek,¹⁵ J. March-Russell,¹² C. McCabe,⁷
 A. Mehta,⁴ D. Muenstermann,⁸ A. StJ. Murphy,¹⁷ K. Nikolopoulos,¹⁸ K. Palladino,¹⁴ S. Paramesvaran,³
 C. Patrick,¹⁸ K. Petridis,⁵ T. Potter,¹⁵ Y. Ramachers,¹⁶ R. Taakan,⁷ P. Scovell,¹⁰ S. Shaw,¹⁷ M. Spannowsky,⁹
 T. J. Sumner,² A. Szelc,¹⁷ D. R. Tovey,¹⁵ R. Trotta,² Y. Uchida,² C. Uhlemann,¹⁴ M. van der Grinten,¹⁶
 J. Vossebeld,⁴ D. Waters, ¹, I. Zavula²²

¹University College London, ²Imperial College London, ¹STFC Daresbury Laboratory, ⁴University of Liverpool, ²University of Bristol, ⁴University of Sussex, ⁷King's College London, ⁴Lancaster University, ³Dutham University ³University of Nottingham, ³Zueem Mary, University of London, ¹²Noyal Molaway, University of London, ¹³Brunel University, ⁴Oxford University, ¹³University of Sheffield, ¹⁶STFC Rutherford Appleton Laboratory, ¹⁷University of Edinburgh, ^{4B}Immigham University, ³³Cambridge University, ²⁸Warvick University, ⁴¹Newcastle University.


Statement of Interest to the STFC Science Board

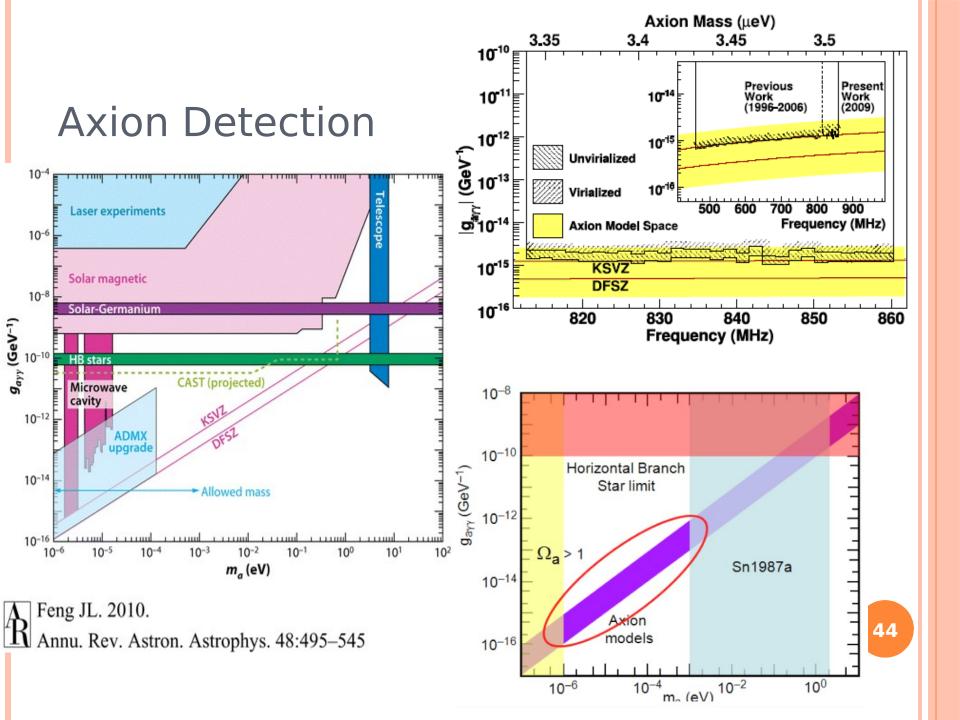

23rd January, 2023

- After freeze-out, neutralino self-annihilation is negligible in universe at large
 - but neutralinos can be captured by repeated scattering in massive bodies, e.g. Sun, and this will produce a significant annihilation rate
 - number of captured neutralinos $N = C A_N^2$ where C is capture rate and A is $\langle \sigma A v \rangle$ per volume
 - if steady state reached, annihilation rate is just C/2, therefore determined by scattering cross-section
 - annihilation channels include W⁺W⁻, $b\bar{b}$, $\tau^+\tau^-$, etc. which produce secondary neutrinos
 - these escape the massive object and are detectable by neutrino telescopes

- Relatively high threshold of neutrino telescopes implies greater sensitivity to "hard" neutrinos, e.g. from WW
- Also possible that neutralinos might collect near Galactic centre
 - in this region other annihilation products, e.g. γ-rays, could escape

LHC Detection of WIMPs and SWIMPs

- WIMPs show up at LHC through missing-energy signature
 - note: not immediate proof of dark-matter status
 - long-lived but not stable neutral particle would have this signature but would not be DM candidate
 - need to constrain properties enough to calculate expected relic density if particle *is* stable, then check consistency
- SuperWIMP parents could also be detected
 - if charged these would be spectacular, because of extremely long lifetime
 - very heavy particle exits detector without decaying
 - if seen, could in principle be trapped in external water tanks, or even dug out of cavern walls (Feng: "new meaning to the phrase 'data mining'")
 - · if neutral, hard to tell from WIMP proper
 - but mismatch in relic density, or conflict with direct detection, possible clues


Axion Detection

Axions couple (unenthusiastically) to photons via

- $L_a \gamma \gamma = -g_a \gamma \gamma E \cdot B$
- they can therefore be detected using Primakoff effect
 - (resonant conversion of axion to photon in magnetic field)
 - ADMX experiment uses very high Q resonant cavity in
 - superconducting magnet to look for excess power
 - this is a scanning experiment: need to adjust resonant frequency to "see" specific mass (very tedious)
- alternative: look for axions produced in Sun (CAST)
 - non-scanning, but less sensitive

а

Dark Matter: Summary

- Astrophysical evidence for dark matter is consistent and compelling
 - \cdot not an unfalsifiable theory—for example, severe conflict between BBN and WMAP on Ωb might have scuppered it
- Particle physics candidates are many and varied
 - and in many cases are not *ad hoc* inventions, but have strong independent motivation from within particle physics
- ^o Unambiguous detection is possible for several candidates, but will need careful confirmation
 - interdisciplinary approaches combining direct detection, indirect detection, conventional highenergy physics and astrophysics may well be required

