

Non Collider Collaboration

Parameters

D. Schulte

Funded by the European Union under Grant Agreement n. 101094300

CERN May 2023

Tentative Parameters

Need to build database with tentative parameters

- Will iterate to arrive at consolidated parameters for the strategy
- Important to get the structure of the data right, numbers will change

Goals:

- Define realistic high-level targets for the areas and components
 - Interface parameters and scalings to make studies more independent
 - Reference design goals discussed at the study level
- Document current designs and assumptions
 - Not yet a "reference design" but a moving target
 - To be provided by the areas, will be reviewed as needed

Review the document to see if it contains the relevant information

• Put in parameters you consider important, even if they may change later

Note: should not consider use of existing infrastructure at this moment

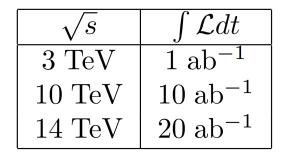
• in conflict with global collaboration, details distract from other key studies Will consider use of existing infrastructure at a later stage with limited detail

General Status

- Goal: define tentative target parameters
 - basis for studies of key limits and dependencies
 - documentation of specific parameters
 - basis for further improved parameters (improved, consolidated)
- Started to work on many key systems
 - started to gain knowledge on driving factors
- Are not yet ready to know where to go to
 - do not move targets if not clearly supported by studies
 - rather try to clarify tentative boundaries and goals
- For all areas: Put in parameters that are important, even if they might change to get structure right
- Need to clarify key studies to make parameter choices more robust
 - no one can assume that the parameters are final
 - find out the boundaries

Key Tentative Target Parameters

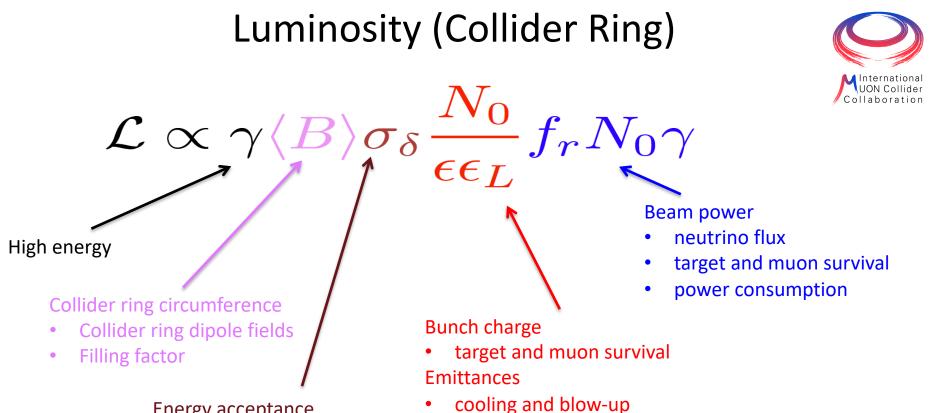
- Beam parameters along the machine
 - energy, charge, emittance, ...
 - targets for the accelerator designers
- Basic machine parameters
 - length, number of components, etc.
- Key performance specifications for the components
 - e.g. dipole field and aperture in the collider ring
 - e.g. cross section of the collider ring magnet, shielding and cooling
 - e.g. similar cross section for the target
 - targets for the component designers and basis for the accelerator designers
- Parameters will be refined later
 - need to understand scaling
 - e.g. cost and power scales
- Obviously, need to closely interact and iterate


D. Schulte: Tentative Parameters, May 2023

High-level Target Parameters

- Luminosity
 - Do we have a strong reason to change integrated luminosity target?
 - How much luminosity would already make a physics case?
 - Angular coverage etc.

High-level Target Parameters



Detector parameters

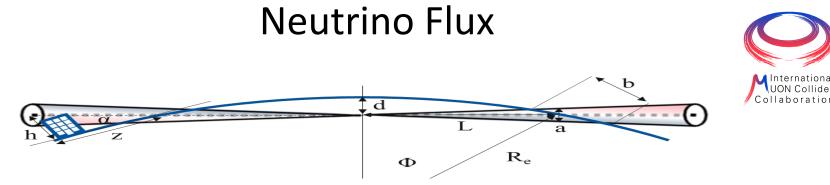
- Is 3 TeV detector based on CLIC good?
- What does need to change for 10 TeV?
- Need to develop table with key parameters:
 - angular coverage
 - vertex detector geometry
 - resolution of tracker/calorimeter
 - particle identification
 - •

...

- Background
 - best to try operation with peak luminosity
 - luminosity reduces as beam is circling

Energy acceptance

beta-function = bunch length


High-level Tentative Target Parameters

If there are strong opinions can change and clarify the definition of parameters

But for the moment should stay with these goals

Parameter	Unit	3 TeV	10 TeV	14 TeV
L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	40
Ν	10 ¹²	2.2	1.8	1.8
f _r	Hz	5	5	5
P _{beam} (injected)	MW	5.3	14.4	20
С	km	4.5	10	14
 (average)	т	7	10.5	10.5
ε _L (norm, 1σ)	MeV m	7.5	7.5	7.5
σ _ε / Ε	%	0.1	0.1	0.1
σ _z	mm	5	1.5	1.07
β	mm	5	1.5	1.07
ε (norm, 1σ)	μm	25	25	25
σ _{x,y}	μm	3.0	0.9	0.63

Parameter choices have been done with the goal to have not more impact than the LHC

• This should not be changed, can express in **neutrino flux**

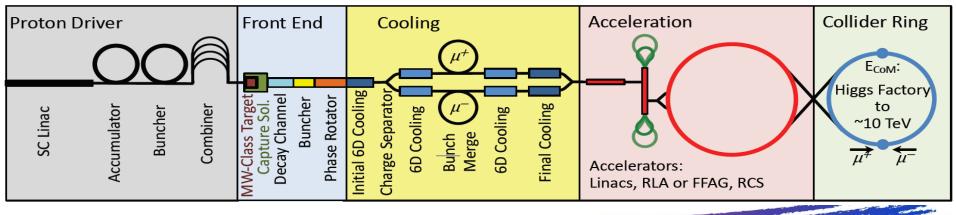
Collider arcs:

- Calculated that mover range should yield +/- 1 mradian
- Assuming short straights are compensated with horizontal wiggling (14 TeV)
- Detailed study of interaction between mover and beam
- Need to identify the range of angles that can be achieved
 - this might be a limit for even higher energies

Detector straights are treated independently

Tentative Component Limits

- Educated guesses of performance limits to be developed by the experts
 - required for the accelerator design
- Magnets
 - Potential technologies
 - Performance parameters with dependencies
 - field level
 - field quality
 - aperture
 - radiation resistance
 - heat load resistance
- Target
 - Limits for shock and radiation
 - ...
- RF
- Cooling
- ...



- Ar i

Muon Beam Parameters

- Define parameters at the interfaces of different areas
 - allows to locally optimise, e.g. acceleration chain
- Ideally transmit full beam phase space to evaluate performance
 - However, for target parameters use simplified approach for now
- At production and cooling muons behave in a very special fashion, after cooling like protons
 - Fix parameters at pivotal point at the end of final cooling

Muon Bunch Charge

Based on J-P Delahaye/some MAP studies

• but used 2 MW target not 1.5 MW

Location	N [10 ¹²]
5 GeV protons at target (400 kJ)	500
muons after front end	48
muons after final cooling (5-20 MeV)	6?
muons after reacceleration 0.2 GeV	4
muons at 60 GeV	2.7
muons in collider (3 TeV)	2.2
muons in collider (10 TeV)	1.8

Likely need some reserve in muon number

- e.g. acceleration to 200 MeV after final cooling has not been included, I think
- can be used to boost performance, if not required as reserve

Bunch charge increase is more important than power increase

• Go for 800 kJ per pulse at 5 Hz?

Proton energy is a local optimisation of proton complex, target and capture efficiency

Acceptance in RCS/collider ring in range of +/- 2σ

charge should refer to muons in this range

Muon Bunch Emittances

- Emittance target at final cooling end should remain as a target for now
 - Do not know better for the moment
- Emittance blow-up from final cooling to IP should remain limited
 - The specifications for equipment imperfections should be made accordingly
 - Would assume a total budget of 10% (most relaxed acceptable tolerance) or 1% (no issue for the moment)
 - Need to distribute fractions to the different systems and imperfections (for the area team)

rel. emittance blow-up	relative tolerance	relative luminosity
0.1%	0.03	0.999
1%	0.1	0.99
10%	0.3	0.9
100%	1	0.5
1000%	3	0.1

Conclusion

- Everybody and area leaders:
 - Review if required parameters are foreseen in the document
 - Or can some be removed?
- Area leaders and other experts
 - Fill in best guesses where possible
 - Provide scalings and justification
- Need this to have time before the annual meeting to go through the numbers
- Will then review the parameters data-base
- Later will introduce formal method to update parameters
- Need to also handle alternatives

Reserve

D. Schulte: Tentative Parameters, May 2023

-1- :-

Key Considerations

- Public acceptance is the key for a new collider
- Energy and luminosity
 - to have an attractive physics case to convince that it is worth doing it
- Detector performance and background
 - to be able to realise the physics programme
- Cost, power consumption and environmental impact
 - to ensure that people are willing to pay the price
- Technical risk and schedule
 - to ensure that the project is realistic