
Some ideas towards a 4D
vertexing in Billoir and KF
formalism

4th April 2023

Alignment Dev Meeting

Valentina Cairo, PF, Ariel Schwartzmann, Lorenzo Santi.

2

Introduction

• Ongoing project in ATLAS since ~2021

The question we are
addressing:

Can we maximize the ATLAS
physics potential
beyond Run 4 by

extending the timing coverage
to the full 𝜂 acceptance?

Features (Order-of-magnitude):

Ultra-fast timing resolution:
O(10) ps

Precise longitudinal information:
O(10) 𝜇m

3

Introduction

• More details in dedicated Upgrade Physics agenda in
January

• Updates this coming Thursday

• Impact in ATLAS spans over several aspects
————————>

• State of the art:

•Vertex t0 resolution has been demonstrated

•Impact on Flavour Tagging has been assessed

•Both aspects are being extended to the
ACTS realm and will include also more in-
depth Tracking & Vertexing studies

Today’s talk!

•Potential for big signal acceptance increase in
delayed photon analysis also demonstrated

•Dedicated work for pile-up rejection has
started

https://indico.cern.ch/event/1238412/
https://indico.cern.ch/event/1269712/#2-progress-on-4d-tracking-stud
https://indico.cern.ch/event/1238412/
https://indico.cern.ch/event/1269712/#2-progress-on-4d-tracking-stud

Refresher - Track parameters in the perigee representation

• Track parameters at the point of closest approach P to a reference point R

• d0: signed transverse IP

• z0: longitudinal IP

• : azimuthal angle of trajectory at P

• : polar angle of trajectory at P

• : ratio of charge over momentum magnitude -> curvature

ϕP
θP
q/p

44

Equations for a generic point on the trajectory

55

• A generic point on
the trajectory V can
be expressed as a
function of the
reference point
coordinates and the
perigee track
parameters

Vertexing problem

66

• Vertex fit: find the “intersection” of a set of N tracks

• Actually, the vertex fit doesn’t care if the tracks intersect or not:

• Find the location in space “closest” to a set of N tracks

• All the 3D fitting was nicely implemented by Bastian in ACTS.

• How to incorporate time in this fit?

• Current track representation limitation (I’ll use ACTS as example)

• ACTS tracks have 6 parameters but only a “3D” surface representation, i.e. the perigee
representation is determined by a 3D-vector, i.e. a line. No time reference, time is
always wrt a global time at 0.

• Propagator only to 3D-surfaces. Therefore:

• Time propagation is just : , where s is the arc-length from A to B, and is
the velocity. If we would propagate to a 4D point (like a surface with a time
measurement or a 4D vertex location), we need to subtract the time of the reference
and obtain a time relative to the reference (same as previous point)

• Do we need to define a “point of closest approach” in 4d-space? What metric,
euclidean?

• Let’s try a simpler solution first

Δt = s/β β

t0

4D reference point

77

• Our idea to extrapolate to a “real” 4D point:

• Go to the Point of closest approach (PCA) spatially and compute

• Global track time is , where is the 4D track reference time, i.e.

if (as it is currently), then t0 is the global track fit time at the reference
point.

• If we would keep the spatial reference point, but just change time
component, then ,

• Defining the PCA spatially is justified if time-resolution is large compared to
transverse IP resolution

• 1ns for a particle at is ~300mm

• Current resolution in the transverse plane is O(10um), means that we would

need O(0.1ps - 0.03mm) time resolution to match spatial

• We can avoid worrying of space-time PCA and propagate spatial PCA

and compute (right?)

Δt

t0 + Δt + tR tR
tR = 0

t′￼0 = t0 + tR − t′￼R

β ∼ 1

Δt

Ingredients

88

• Two type of vertexing:

• Simple (derivatives track parameters wrt vertex position) and Full (derivatives track

parameters wrt 3-momentum).

• Today I’ll discuss only simple vertex fitting

• Only care about the position Jacobian

• We basically need to invert the equations shown at slide 3 and have the track parameters
as function of the vertex (new reference) position

A =
∂(d0, z0, ϕp, θ, q/p, t0)

∂(xV, yV, zV, tV)

4D-Vertexing - Ingredients

99

• What about time?

• “Approximated” and 4d-fit

• We extend the extrapolation to the beam line with an extrapolation to a

beam-plane where the plane is z-t

• The time of a track with respect to the 4D reference point R, will be the t-

coordinate of the PCA in the bending plane (similar to z0)

• 4d fit

•

• The sgnt is a sign which depends if the propagation to the vertex
location is forward (-) or backward (+) wrt the current track 3D reference
point 
[Really need to crosscheck this sign when going in the plane]

• Approximated 4D-fit

• Neglect arc-length effect on time

• No dependence on the vertex time from the vertex location => we
expect that the vertex time is just the weighted mean of the track
time

• Nothing new, just inserted in a “fit formalism”

tV
0 = t0 + tR + sgnt ⋅ s(xV, yV, zV)/β = t0 + tR +

ρΔϕ

β sin θ

ρΔϕ

Δt = s/β → 0

ρΔϕ = ρ(ϕV − ϕP)

Approximated simple 4D Vertexing

1010

•

• That’s the last row of the position jacobian:

∂t0/∂tV = 1, ∂t0/∂kV = 0, with k=x,y,z

• We expect just the weighted average, no effect on vertex location

• Advantage:

• It’s inserted directly the Billoir / KF vtx-fit formalism.

Aapprox
4D =

−h X
S −h Y

S 0 0
ρ

tan θ
Y
S2 − ρ

tan θ
X
S2 1 0

− Y
S2

X
S2 0 0

0 0 0 0
0 0 0 0
0 0 0 1

Approximated simple 4D Vertexing

1111

• Implemented logic in ACTS and tested using the Billoir unit test

• We generated 4D vertex positions, space and time

• We generate N tracks around those vertex locations with different resolutions of track parameters and diagonal covariance matrix

• For simplicity I fix the time resolution to 100ps for all tracks (so time should be the simple average)

• CHECK

• NOMINAL: Is the original 3D vertex fit without time

• APPROXIMATED SIMPLE: is the 4D vertex fit in the approximated case

• The vertex location is independent on the time fit [very small 4th significant digit corrections]

• The vertex time is the average of the track time [expected]

Δt → 0

NOMINAL APPROXIMATED SIMPLE

Approximated simple 4D Vertexing - UnitTest

1212

• X-Y-Z / T correlations at 0

Simple 4D vertex

1313

• In the simple 4D vertex fit we assume

• We just need to compute the

• Remind: is very similar to and the derivatives are already computed! So:

•

•

• The full Jacobian for the Simple 4D Vertex fit becomes (modulo wrong sign in last row first 2 elements)

∂(d0, z0, ϕP, θP, q/p)
∂(ϕV, θV, q/p)

= 0

∂(t0)
∂(xV, yV, zV, tV)

t0 = tV − tR −
ρΔϕ

β sin θ
z0 = zV − zR +

ρΔϕ

tan θ
∂t0
∂tV

= 1

∂t0
∂xV

= −
1

β cos θ
∂z0
∂xV

∂t0
∂yV

= −
1

β cos θ
∂z0
∂yV

∂t0
∂zV

= 0

A4D =

−h X
S −h Y

S 0 0
ρ

tan θ
Y
S2 − ρ

tan θ
X
S2 1 0

− Y
S2

X
S2 0 0

0 0 0 0
0 0 0 0

− ρ
β sin θ

Y
S2 + ρ

β sin θ
X
S2 0 1

Simple 4D vertex

1414

• Tested with a sigma_t ~ 1mm

Some words about the implementation

1515

• Added time information to the FullBilloirVertexFitter.ipp

• Added proper reference to t0 for each of Billoir fit iteration to keep track of the deltaV

correction to the reference point

• Assumed pion mass for the beta computation (doesn’t really matter)

• To be fixed:

• Weight matrix doesn’t have to be cast to a 5x5 matrix in the case of time fit.

• Currently weight matrix with time is wrong => Fixed after the meeting

• These changes are necessary even if a different Linearizer is used

• Such as a numerical linearizer.

• Additionally if we want a 6D track, we should think about a 4D reference point (in ou
opinion)

Derivation of the full jacobians

1616

Summary and to-do

1717

• The vertexing code in ACTS is really nicely developed and clear. Kudos++

• Last time we checked ACTS vertexing with time we found that such fit was not supported.

• The developers solved the issue by removing time from the fit, basically. (which is fine)

• We tried to tackle the problem and tried to write the Jacobian matrix for the vertex fit

• We need other experts to cross-check if it’s correct

• We extended the ACTS unit-tests to check the basic case where we neglect the correction to

the time of the vertex due to the extrapolation position

• It gives the expected results and should be good enough for expected short-term time

measurement time sensitivity (it’s nothing fancy, just trivial case)

• We showed that the spatial derivatives are simple and similar to dz0/dV

• We finished the math and have a version for review after adding the dependence on the track

momenta (Full4DBilloirVertexFit)

• We are testing this in a simple scenario (unit tests, for example)

• In particular we want to check when time sensitivity starts to “play a role” on

determining the vertex position (as function of N-Tracks and measurement resolution)

