Some ideas towards a 4D
vertexing in Billoir and KF

formalism

Valentina Cairo, PF, Ariel Schwartzmann, Lorenzo Santi.

4th April 2023
Alignment Dev Meeting

NNNNNNNN

Introduction

ITk

r [mm)

1 ITk Layout: 23-00-03

800*
All soo_._
si]
m AR 1 I l

1400 -ATLAS Slmulatlon Preliminary

z [mm)

Extractable & Replaceable
(Radiation hardness up to ~10-15 MGy)

Increased n
coverage (from 2.4
to 4.0)

Average time resolution per hit (start and end of operational lifetime) |
24 < |yl <40

| Avera;

Extractable & Replaceable
(Radiation hardness up to ~2 MGy)

ge time

jon per track (start and end of op

= 35 ps (start), = 70 ps (end) |

| lifetime) = = 30ps (start), = 50 ps (end) |

Ongoing project in ATLAS since ~2021

The question we are
addressing:

Can we maximize the ATLAS
physics potential
beyond Run 4 by

extending the timing coverage
to the full y acceptance?

Features (Order-of-magnitude):

Ultra-fast timing resolution:
O(10) ps
Precise longitudinal information:
O(10) um

Introduction

g) Efficiency, purity, IP resolution,
More details in dedicated Upgrade Physics agenda in ———— // SR low pT tracking?
Janua Computin
ry ‘ Speed?

Updates this coming Thursda ;
Impact in ATLAS spans over several aspects ’

VAl Forward jets and
________ > Measure vertex 0 N\

\

N LLPs with large
ctau

P Flavour Tagging
Improve central object ,‘/
reconstruction I || ps with small
ctau

State of the art:
*Vertex t0 resolution has been demonstrated
*Impact on Flavour Tagging has been assessed

*Both aspects are being extended to the
ACTS realm and will include also more in-
depth Tracking & Vertexing studies

Today’s talk!

*Potential for big signal acceptance increase in
delayed photon analysis also demonstrated

*Dedicated work for pile-up rejection has
started

https://indico.cern.ch/event/1238412/
https://indico.cern.ch/event/1269712/#2-progress-on-4d-tracking-stud
https://indico.cern.ch/event/1238412/
https://indico.cern.ch/event/1269712/#2-progress-on-4d-tracking-stud

Refresher - Track parameters in the perigee representation

\y A P
ox|) ~ sin(0)
Y R] | - Zo R N P ng
} | | "X | > p
| \ | |
Pl AN
‘ ‘ \ \
| J | cpp | T
: [p—— - P
1 V e Vv
_

e Track parameters at the point of closest approach P to a reference point R
e dO: signed transverse IP
 z0: longitudinal IP

* ¢p: azimuthal angle of trajectory at P
« Op: polar angle of trajectory at P

e g/p: ratio of charge over momentum magnitude -> curvature

Equations for a generic point on the trajectory

\y A pp
* A generic point on -
the trajectory V can Y\ R B Zo R
be expressed as a | | | “x | =
function of the P dy 1 I 0
reference point | : Ao, | -
coordinates and the l P P
perigee track oy w v
parameters |
Ty = xR+ dgcos (¢p+g) +p[cos (¢V+g) — CoS (¢p+g)]
yy = YR+ dpsin (qu -+ g) +p [sin (qbv + E) — sin (gbp + g)] (5.32)
2y = 2zZr+2zo— tmf(e) [PV — ¢y

Vertexing problem

Vertex fit: find the “intersection” of a set of N tracks

Actually, the vertex fit doesn’t care if the tracks intersect or not:
e Find the location in space “closest” to a set of N tracks

All the 3D fitting was nicely implemented by Bastian in ACTS.

How to incorporate time in this fit?

Current track representation limitation (I'll use ACTS as example)

o ACTS tracks have 6 parameters but only a “3D” surface representation, i.e. the perigee
representation is determined by a 3D-vector, i.e. a line. No time reference, time is
always wrt a global time at O.

» Propagator only to 3D-surfaces. Therefore:

« Time propagation is just : A, = s/f3, where s is the arc-length from Ato B, and f is

the velocity. If we would propagate to a 4D point (like a surface with a time
measurement or a 4D vertex location), we need to subtract the time of the reference

and obtain a 7, time relative to the reference (same as previous point)

» Do we need to define a “point of closest approach” in 4d-space? What metric,
euclidean?
o Let’s try a simpler solution first

4D reference point

* Our idea to extrapolate to a “real” 4D point:

« Go to the Point of closest approach (PCA) spatially and compute A,

e Global track time is #y + A, + #5, where 5 is the 4D track reference time, i.e.
if 1, = 0 (as it is currently), then t0 is the global track fit time at the reference
point.

* If we would keep the spatial reference point, but just change time
component, then £ = t, + tp — Ig,

* Defining the PCA spatially is justified if time-resolution is large compared to
transverse |IP resolution
* 1ns for a particle at # ~ 1 is ~300mm

e Current resolution in the transverse plane is O(10um), means that we would
need O(0.1ps - 0.03mm) time resolution to match spatial
* We can avoid worrying of space-time PCA and propagate spatial PCA
and compute A7 (right?)

Ingredients

* Two type of vertexing:
e Simple (derivatives track parameters wrt vertex position) and Full (derivatives track
parameters wrt 3-momentum).
e Today I'll discuss only simple vertex fitting

a(do, Zo, ¢) 9, Q/p, to)

a(-XV’ YV, ZV’ tV)
* We basically need to invert the equations shown at slide 3 and have the track parameters
as function of the vertex (new reference) position

. Only care about the position Jacobian A =

dy = P+Sgn(do—/))\/(wv—$R—PCOS (¢V+g)) + (yv—yR—PSin (¢V+g))

B yy —yr — psin (¢y +) _
¢p = arctan <$V ~on— poos (¢ + g)) (5.33)
20 = zr+tay+ ta:(e) [pv — &p (v, yv, dv,0,q/D)]

3), = G),

Op = 0y

4D-Vertexing - Ingredients

e What about time?
e “Approximated” and 4d-fit
» We extend the extrapolation to the beam line with an extrapolation to a
beam-plane where the plane is z-t
» The time of a track with respect to the 4D reference point R, will be the t-
coordinate of the PCA in the bending plane (similar to z0)
« 4d fit
PAqs

psind

I =1+t + sgnt - s(xy, Yy, 2p)/f =ty + g +

» The sgnt is a sign which depends if the propagation to the vertex
location is forward (-) or backward (+) wrt the current track 3D reference
point
[Really need to crosscheck this sign when going in the pA¢ plane]

« Approximated 4D-fit
« Neglect arc-length effect on time A, = s/ — 0
» No dependence on the vertex time from the vertex location => we
expect that the vertex time is just the weighted mean of the track
time
« Nothing new, just inserted in a “fit formalism”

|

' PP

NY

=lp(dy — ¢p)

Approximated simple 4D Vertexing

 Ofy/ 0ty = 1, 0ty/ dky, = 0, with k=x,y,z
e That's the last row of the position jacobian:

[-h% -h% o) ~h%

gsr —mger 1 taies_yz

A— 8(d08,(2$0‘,/¢;‘;9§‘;)q/p) _ _§ % 0 , # Angrox _ _S_Y2
o 0 0 0 0
0
\ 0 0 0) 0

* We expect just the weighted average, no effect on vertex location
e Advantage:

* It's inserted directly the Billoir / KF vtx-fit formalism.

P X

tang §2

S oo O

- o o O - -

10

Approximated simple 4D Vertexing

e Implemented logic in ACTS and tested using the Billoir unit test
¢ We generated 4D vertex positions, space and time
¢ We generate N tracks around those vertex locations with different resolutions of track parameters and diagonal covariance matrix
e For simplicity | fix the time resolution to 100ps for all tracks (so time should be the simple average)
e CHECK
e NOMINAL: Is the original 3D vertex fit without time

« APPROXIMATED SIMPLE: is the 4D vertex fit in the approximated case A, — 0

* The vertex location is independent on the time fit [very small 4th significant digit corrections]
* The vertex time is the average of the track time [expected]

NOMINAL APPROXIMATED SIMPLE

Vertex: 0.0350348, 0.0941408, 15.3922
STl rue Vertex: 0.0350348, 0.0941408, 15.3922, —76.2096

0.0778377 Fitted Vertex 4Pos: -0.0607083 -0.0778377 15.3543 -79.8125
15.3543

Fitting nTracks: 7 True Vertex: 0.00193901, 0.0908309, -11.8037, -79.8651
rue Vertex: 0.00193901, 0.0908309, -11.8037 M Fitted Vertex 4Pos: ©.111817
Fitted Vertex: 0.111397 -0.0209129

0.0203807

J11.7717 -11.7719

—-98.0354

rue Vertex: 0.0660289, -0.0190278, -2.10198, 123.407

Fitting nTracks: 3 Fitted Vertex 4Pos: -0.0467366
rue Vertex: 0.0660289, -0.0190278, -2.10198

Fitted Vertex: -0.046738 0.0749053

0.0749018 -2.11771

-2.11771 125.604

Approximated simple 4D Vertexing - UnitTest

resx

htemp

800 Mean

800

Entries 10000

2.375e-05

Std Dev 0.1036

700

600

500

400

300

200

100

-IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|]I

htemp

Entries
Mean

700

Std Dev 0.1038

10000
—0.0006617

600

500

400

300

200

100

IIIIIIIII|IIII|IIII|IIII|IIIIIIIII|I

o

e X-Y-Z /T correlations at 0

rest
- htemp
400— Entries 10000
- Mean 0.1171
350/— Std Dev 7.315
300—
250/—
200f—
150—
100f—
50—
oL .
-30 -20 -10 0 10 20 30
rest
resz
htemp
350 — Entries 10000
F Mean —0.0001544
E Std Dev 0.08049
300(—
250(—
200f—
150 —
100—
50{—
0 E. 1 - -
0.4 -0.1 0 0.1 0.2

12

Simple 4D vertex

a(d()a Z()’ ¢P9 913’ Cl/p) _ 0

In the simple 4D vertex fit we assume
d(¢y, Oy, q/p)

. o1y)
. We just need to compute the
a(-X"Va Yvs 2y, tV)
. PRy pa -
. Remind: 1y = t,, — tp, — ———is very similarto zj, = 2, — 2 + and the derivatives are already computed! So:
sin @ tan @
of,
0 _
oty

= — = — = O
oxy pcosl oxy Odyy pcosf dyy Oz

The full Jacobian for the Simple 4D Vertex fit becomes (modulo wrong sign in last row first 2 elements)

-

X Y
((—hs kg 0 “hs o hs O

Y X P Y X
ﬁ%? _t_a‘;)ﬁ? 1 tan 6 §2 tan6 §2 1

8d7) ,0 ’ X

A== (c)'i(i)v(b?fv fV;I/p) -| = s 0, # Asp = _S_Y2 w0
A 0 0 0 0 0 0
0 0 0
| 0 00 ey . rx g

psin@ §2 psind §2

\Hocoooj

100

350

300

250

200

150

100

50

Simple 4D vertex

e Tested with a sigma_t~ 1mm

resx resy resz
E 700 Fiemp a0 hiemp
__htemp = Entries 10000 F [Entries 10000
Entries 10000 o Mean —0.0006617 F Mean —0.0001544
Mean ~ 2.375e-05 600 StdDev 0.1038 300/~ |StdDev 0.08049
StdDev 0.1036 o F
» htemp - htemp
htemp 500[— Entries 9998 250/— | Entries 9998
Entries 9998 r Mean -0.0008893 E I\S/IZaS 85:%:—1?:
Mean —0.0002595 - Std Dev 0.109 E td Dev 0.
Std Dev 0.1095 400 = 200—
300~ 150 —
200 100~
100[— 50—
[R 0:‘ e I RN G:‘l_.._A._J. . | “
0.6 0.8 1 -0.6 -0.4 -0.2 0 0.2 0.4 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2
resx resy resz
rest
F 3000
E htemp r htemp
= Entries 10000 [|~ comxt Eniies oo
F Mean 0.1171 2500~ | —— con -
- SidDev 7.315 - Tyt H StdDev 002784
- - corrzt htemp
-] htemp 20001 Entries 10000
- Entries 9998 | Mean -0.0002207
F Mean 0.1177 r StdDev 0.02704
= StdDev 7315 - Hiomp
E 1500~ Entries 10000
F - Mean 0.0001196
= [Std Dev 0.01735
- 1000—
B 500[—
= | N A I . i
=30 20 0 o 15 0 = 04 03 02 -01 0 04 02 03
rest

14

Some words about the implementation

* Added time information to the FullBilloirVertexFitter.ipp
* Added proper reference to t0 for each of Billoir fit iteration to keep track of the deltaV
correction to the reference point
* Assumed pion mass for the beta computation (doesn’t really matter)
* To be fixed:
* Weight matrix doesn’t have to be cast to a 5x5 matrix in the case of time fit.
* Currently weight matrix with time is wrong => Fixed after the meeting
* These changes are necessary even if a different Linearizer is used
* Such as a numerical linearizer.

* Additionally if we want a 6D track, we should think about a 4D reference point (in ou
opinion)

15

Derivation of the full jacobians

Here is the derivation of the jacobian terms.

dto p Y
dxy B3 52sin6
oo _ [p X
dyv 3 S%sin0
oty
o2y 0
oty
% =1
Ot _ _ l p (1 B g)]
ddy | Bsind 52
I __[p pR A
o0y [B (A¢+ 52 tan? 6 M cose)]
o _ p (B ﬁ) pA¢ | _ g2]
d(q/p) [(Q/P)Bcoso ¢ 92 + B(q/p)sinO(A)

16

Summary and to-do

The vertexing code in ACTS is really nicely developed and clear. Kudos++

Last time we checked ACTS vertexing with time we found that such fit was not supported.

» The developers solved the issue by removing time from the fit, basically. (which is fine)
We tried to tackle the problem and tried to write the Jacobian matrix for the vertex fit

* We need other experts to cross-check if it's correct
We extended the ACTS unit-tests to check the basic case where we neglect the correction to
the time of the vertex due to the extrapolation position

* |t gives the expected results and should be good enough for expected short-term time

measurement time sensitivity (it's nothing fancy, just trivial case)

We showed that the spatial derivatives are simple and similar to dz0/dV

We finished the math and have a version for review after adding the dependence on the track
momenta (Full4DBilloirVertexFit)

e We are testing this in a simple scenario (unit tests, for example)
* In particular we want to check when time sensitivity starts to “play a role” on
determining the vertex position (as function of N-Tracks and measurement resolution)

17

