Update on Energy Loss

PR#1323

Beomki Yeo

Motivation

- Current ACTS energy loss shows a huge difference when compared to the PDG truth value
- Mostly detected while I was working on detray material interactions and writing their unit tests
- Its impact is not negligible not only for physics but also for statistics (pull value distributions)

Mean Energy Loss (Bethe-Bloch)

Comparison with PDG table for a muon in silicon:
 https://pdg.lbl.gov/2022/AtomicNuclearProperties/MUE/muE_silicon_Si.pdf

Muons in silicon (Si)									
Z 14 (Si)	$A \; [{ m g/mol}] \rho \\ 28.0855(3)$	$[{ m g/cm^3}] \ 2.329$	$\begin{array}{c} I~[\mathrm{eV}]\\ 173.0 \end{array}$	$a \\ 0.14921$	$k = m_s$ 3.2546	x_0 0.2015	x_1 2.8716	\overline{C} 4.4355	$\frac{\delta_0}{0.14}$
T	p $[MeV/c]$	Ionization	Brems Pair prod Photonucl Tot [MeV cm ² /g] —		Total	CSDA range - [g/cm ²]			
10.0 MeV 14.0 MeV 20.0 MeV 30.0 MeV	5.616×10^{3} 6.802×10^{3}	4.987 3.912					6.363 4.987 3.912 3.047	8.779 > 1.595 > 2.969 > 5.905 >	10 ⁰ 10 ⁰
40.0 MeV 80.0 MeV	$7 1.003 \times 10^{2}$ $7 1.527 \times 10^{2}$	2.608 1.965					2.608 1.965	9.476 > 2.770 >	10^0 10^1
100. MeV 140. MeV 200. MeV	$7 2.218 \times 10^{5}$ $7 2.868 \times 10^{5}$	1.737 1.678				0.000	1.849 1.737 1.678	3.822 > 6.064 > 9.590 >	10^{1} 10^{1}
273. MeV 300. MeV 400. MeV 800. MeV	$7 3.917 \times 10^{5}$ $7 4.945 \times 10^{5}$	1.665 1.681	0.00	0		0.000 0.000 0.000 0.000	1.664 1.666 1.681 1.768	Minimum 1.559 > 2.157 > 4.475 >	10^2 10^2
1.00 GeV 1.40 GeV	$7 1.101 \times 10^{5}$ $7 1.502 \times 10^{5}$	1.803 1.860	0.00	1 0	.000	0.000 0.001	1.804 1.862	5.595 > 7.776 >	10^2 10^2
2.00 GeV 3.00 GeV 4.00 GeV	$7 - 3.104 \times 10^{3}$	1.991	0.00 0.00 0.00	2 0	.001 .001 .002	0.001 0.001 0.002	1.924 1.995 2.045	1.094 > 1.604 > 2.099 >	10^{3}
8.00 GeV	7 1.011 × 10°	2.177	0.00 0.00 0.01	9 0	.006	0.004 0.005 0.006	2.162 2.199	3.994 > 4.911 > 6.705 >	10^{3}
14.0 GeV 20.0 GeV 30.0 GeV 40.0 GeV	$7 2.011 \times 10^{\circ}$ $7 3.011 \times 10^{\circ}$ $7 4.011 \times 10^{\circ}$	2.270 2.319 2.352	0.02 0.03 0.04	0 0 3 0 6 0	.014 .023 .040 .059	0.009 0.013 0.017	2.257 2.322 2.405 2.474	9.325 > 1.355 > 1.765 >	10^3 10^4 10^4
80.0 GeV 100. GeV 140. GeV	$7 1.001 \times 10^{9}$ $7 1.401 \times 10^{9}$	2.451	0.10 0.13 0.20	6 0 0 0	.142 .187 .279	0.033 0.040 0.056	2.707 2.815 3.022	3.308 > 4.033 > 5.404 >	10^4 10^4
200. GeV 300. GeV 400. GeV	$7 3.001 \times 10^{1}$ $7 4.001 \times 10^{5}$	2.563 2.593	0.30 0.47 0.65	3 0 1 0	.425 .675 .935	0.080 0.119 0.159	3.328 3.831 4.338	7.295 > 1.009 > 1.255 >	10^5 10^5
581. GeV 800. GeV			0.98		.417	0.232 0.322	5.263 6.379	Muon criti 2.010 >	

Most Probable Energy Loss (Landau)

- Quite tricky to validate because the most probable energy loss is not provided by the PDG table
- But at least one figure is provided in <u>PDG review</u>
 - 1.7 mm silicon slab
 - Muon
 - 10 GeV
 - Most probable energy loss ~ 0.525 MeV
- Landau function of Acts main gives 0.69 MeV (??)

Figure 34.7: Electronic energy deposit distribution for a 10 GeV muon traversing 1.7 mm of silicon, the stopping power equivalent of about 0.3 cm of PVT-based scintillator [1,13,33]. The Landau-Vavilov function (dot-dashed) uses a Rutherford cross section without atomic binding corrections but with a kinetic energy transfer limit of $W_{\rm max}$. The solid curve was calculated using Bethe-Fano theory. $M_0(\Delta)$ and $M_1(\Delta)$ are the cumulative 0th moment (mean number of collisions) and 1st moment (mean energy loss) in crossing the silicon. (See Sec. 34.2.1). The fwhm of the Landau-Vavilov function is about 4 ξ for detectors of moderate thickness. Δ_p is the most probable energy loss, and $\langle \Delta \rangle$ divided by the thickness is the Bethe dE/dx.

List of Bugs

- 1. A factor of two is missing in the calculation of the mean energy loss from Bethe-Bloch equation
 - Just a silly mistake
- 2. Incident particle mass is used in the calculation of the most probable energy loss from Landau distribution
 - It should be fixed to the electron mass
- 3. A factor of 1000 is missing in the log term of density effect correction
 - Should be from mm³ -> cm³ conversion
- Mean energy loss and most probable energy loss are not independent to each other because they are from the same Landau distribution - These bugs can badly affect both physics and statistics

Electron Mass input for the Most Probable Energy Loss

PDG review definitely has an error in the mass notation

Original paper: Straggling in thin silicon detectors

m rest mass of electron, $mc^2 = 0.511004$ MeV, also average number of collisions $m = \langle n \rangle$

APPENDIX E: MOST PROBABLE ENERGY LOSS Δ_p AND WIDTH w OF THE LANDAU FUNCTION

Landau gave the following equation for the most probable energy loss:

$$L_{\Delta_{p}} = \xi \left[-0.22278 + 1 - \Gamma - \beta^{2} + \ln \frac{2mc^{2}\beta^{2}\gamma^{2}}{I} + \ln \frac{\xi}{I} - \delta \right]$$

$$= \xi \left[\ln \frac{2mc^{2}\beta^{2}\gamma^{2}}{I} + \ln \frac{\xi}{I} + 0.2000 - \beta^{2} - \delta \right]. \quad (E1)$$

PDG review

Symb.	Definition	Value or (usual) units
$m_e c^2$	electron mass $\times c^2$	$0.51099895000(15)\mathrm{MeV}$

$$\Delta_p = \xi \left[\ln \frac{2mc^2\beta^2\gamma^2}{I} + \ln \frac{\xi}{I} + j - \beta^2 - \delta(\beta\gamma) \right]$$

Where the factor of 1000 comes from

- In density effect correction, there is an *unit-less* density term in g/cm³
 - o ACTS sets mm unit as 1 so we need to multiply 1000 here...

PDG review

$\hbar\omega_p$	plasma energy	$\sqrt{\rho \langle Z/A \rangle} \times 28.816 \text{ eV}$
	$\sqrt{4\pi N_e r_e^3} \ m_e c^2/\alpha$	$\rho \text{ in g cm}^{-3}$

Before (reference) & After (monitored) the Fix

Alas...

pull_qop

pullmean_qop_vs_eta

pullmean_qop_vs_pT

Outlook

- The impact is not small after the fix
 - I recommend to update the Acts version that will include the changes especially in case using Acts as an external library
- There is still a negative shift in qop pull value for low pT particles
 - Have some plans to improve it later

Backups

Pure Impact of Mass in the Most Probable Energy Loss

- Reference: electron mass
- Monitored: Incident particle mass (muon as in physmon.py)

resmean_qop_vs_pT

