Update on Energy Loss PR#1323 Beomki Yeo ## **Motivation** - Current ACTS energy loss shows a huge difference when compared to the PDG truth value - Mostly detected while I was working on detray material interactions and writing their unit tests - Its impact is not negligible not only for physics but also for statistics (pull value distributions) # Mean Energy Loss (Bethe-Bloch) Comparison with PDG table for a muon in silicon: https://pdg.lbl.gov/2022/AtomicNuclearProperties/MUE/muE_silicon_Si.pdf | Muons in silicon (Si) | | | | | | | | | | |--|---|-------------------------|---|-------------------|------------------------------|--------------------------------------|----------------------------------|--|------------------------------------| | Z
14 (Si) | $A \; [{ m g/mol}] \rho \\ 28.0855(3)$ | $[{ m g/cm^3}] \ 2.329$ | $\begin{array}{c} I~[\mathrm{eV}]\\ 173.0 \end{array}$ | $a \\ 0.14921$ | $k = m_s$
3.2546 | x_0 0.2015 | x_1 2.8716 | \overline{C} 4.4355 | $\frac{\delta_0}{0.14}$ | | T | p $[MeV/c]$ | Ionization | Brems Pair prod Photonucl Tot
[MeV cm ² /g] — | | Total | CSDA range
- [g/cm ²] | | | | | 10.0 MeV
14.0 MeV
20.0 MeV
30.0 MeV | 5.616×10^{3}
6.802×10^{3} | 4.987
3.912 | | | | | 6.363
4.987
3.912
3.047 | 8.779 >
1.595 >
2.969 >
5.905 > | 10 ⁰
10 ⁰ | | 40.0 MeV
80.0 MeV | $7 1.003 \times 10^{2}$
$7 1.527 \times 10^{2}$ | 2.608
1.965 | | | | | 2.608
1.965 | 9.476 >
2.770 > | 10^0 10^1 | | 100. MeV
140. MeV
200. MeV | $7 2.218 \times 10^{5}$
$7 2.868 \times 10^{5}$ | 1.737
1.678 | | | | 0.000 | 1.849
1.737
1.678 | 3.822 >
6.064 >
9.590 > | 10^{1} 10^{1} | | 273. MeV
300. MeV
400. MeV
800. MeV | $7 3.917 \times 10^{5}$
$7 4.945 \times 10^{5}$ | 1.665
1.681 | 0.00 | 0 | | 0.000
0.000
0.000
0.000 | 1.664
1.666
1.681
1.768 | Minimum
1.559 >
2.157 >
4.475 > | 10^2
10^2 | | 1.00 GeV
1.40 GeV | $7 1.101 \times 10^{5}$
$7 1.502 \times 10^{5}$ | 1.803
1.860 | 0.00 | 1 0 | .000 | 0.000
0.001 | 1.804
1.862 | 5.595 >
7.776 > | 10^2 10^2 | | 2.00 GeV
3.00 GeV
4.00 GeV | $7 - 3.104 \times 10^{3}$ | 1.991 | 0.00
0.00
0.00 | 2 0 | .001
.001
.002 | 0.001
0.001
0.002 | 1.924
1.995
2.045 | 1.094 >
1.604 >
2.099 > | 10^{3} | | 8.00 GeV | 7 1.011 × 10° | 2.177 | 0.00
0.00
0.01 | 9 0 | .006 | 0.004
0.005
0.006 | 2.162
2.199 | 3.994 >
4.911 >
6.705 > | 10^{3} | | 14.0 GeV
20.0 GeV
30.0 GeV
40.0 GeV | $7 2.011 \times 10^{\circ}$
$7 3.011 \times 10^{\circ}$
$7 4.011 \times 10^{\circ}$ | 2.270
2.319
2.352 | 0.02
0.03
0.04 | 0 0
3 0
6 0 | .014
.023
.040
.059 | 0.009 0.013 0.017 | 2.257
2.322
2.405
2.474 | 9.325 >
1.355 >
1.765 > | 10^3
10^4
10^4 | | 80.0 GeV
100. GeV
140. GeV | $7 1.001 \times 10^{9}$
$7 1.401 \times 10^{9}$ | 2.451 | 0.10
0.13
0.20 | 6 0
0 0 | .142
.187
.279 | 0.033
0.040
0.056 | 2.707
2.815
3.022 | 3.308 >
4.033 >
5.404 > | 10^4 10^4 | | 200. GeV
300. GeV
400. GeV | $7 3.001 \times 10^{1}$
$7 4.001 \times 10^{5}$ | 2.563
2.593 | 0.30
0.47
0.65 | 3 0
1 0 | .425
.675
.935 | 0.080
0.119
0.159 | 3.328
3.831
4.338 | 7.295 >
1.009 >
1.255 > | 10^5 10^5 | | 581. GeV
800. GeV | | | 0.98 | | .417 | 0.232 0.322 | 5.263
6.379 | Muon criti
2.010 > | | # Most Probable Energy Loss (Landau) - Quite tricky to validate because the most probable energy loss is not provided by the PDG table - But at least one figure is provided in <u>PDG review</u> - 1.7 mm silicon slab - Muon - 10 GeV - Most probable energy loss ~ 0.525 MeV - Landau function of Acts main gives 0.69 MeV (??) Figure 34.7: Electronic energy deposit distribution for a 10 GeV muon traversing 1.7 mm of silicon, the stopping power equivalent of about 0.3 cm of PVT-based scintillator [1,13,33]. The Landau-Vavilov function (dot-dashed) uses a Rutherford cross section without atomic binding corrections but with a kinetic energy transfer limit of $W_{\rm max}$. The solid curve was calculated using Bethe-Fano theory. $M_0(\Delta)$ and $M_1(\Delta)$ are the cumulative 0th moment (mean number of collisions) and 1st moment (mean energy loss) in crossing the silicon. (See Sec. 34.2.1). The fwhm of the Landau-Vavilov function is about 4 ξ for detectors of moderate thickness. Δ_p is the most probable energy loss, and $\langle \Delta \rangle$ divided by the thickness is the Bethe dE/dx. ## List of Bugs - 1. A factor of two is missing in the calculation of the mean energy loss from Bethe-Bloch equation - Just a silly mistake - 2. Incident particle mass is used in the calculation of the most probable energy loss from Landau distribution - It should be fixed to the electron mass - 3. A factor of 1000 is missing in the log term of density effect correction - Should be from mm³ -> cm³ conversion - Mean energy loss and most probable energy loss are not independent to each other because they are from the same Landau distribution - These bugs can badly affect both physics and statistics # Electron Mass input for the Most Probable Energy Loss PDG review definitely has an error in the mass notation #### Original paper: Straggling in thin silicon detectors m rest mass of electron, $mc^2 = 0.511004$ MeV, also average number of collisions $m = \langle n \rangle$ APPENDIX E: MOST PROBABLE ENERGY LOSS Δ_p AND WIDTH w OF THE LANDAU FUNCTION Landau gave the following equation for the most probable energy loss: $$L_{\Delta_{p}} = \xi \left[-0.22278 + 1 - \Gamma - \beta^{2} + \ln \frac{2mc^{2}\beta^{2}\gamma^{2}}{I} + \ln \frac{\xi}{I} - \delta \right]$$ $$= \xi \left[\ln \frac{2mc^{2}\beta^{2}\gamma^{2}}{I} + \ln \frac{\xi}{I} + 0.2000 - \beta^{2} - \delta \right]. \quad (E1)$$ #### **PDG** review | Symb. | Definition | Value or (usual) units | |-----------|----------------------------|---------------------------------| | $m_e c^2$ | electron mass $\times c^2$ | $0.51099895000(15)\mathrm{MeV}$ | $$\Delta_p = \xi \left[\ln \frac{2mc^2\beta^2\gamma^2}{I} + \ln \frac{\xi}{I} + j - \beta^2 - \delta(\beta\gamma) \right]$$ ## Where the factor of 1000 comes from - In density effect correction, there is an *unit-less* density term in g/cm³ - o ACTS sets mm unit as 1 so we need to multiply 1000 here... #### PDG review | $\hbar\omega_p$ | plasma energy | $\sqrt{\rho \langle Z/A \rangle} \times 28.816 \text{ eV}$ | |-----------------|--|--| | | $\sqrt{4\pi N_e r_e^3} \ m_e c^2/\alpha$ | $\rho \text{ in g cm}^{-3}$ | # Before (reference) & After (monitored) the Fix Alas... ## pull_qop ### pullmean_qop_vs_eta ### pullmean_qop_vs_pT ## Outlook - The impact is not small after the fix - I recommend to update the Acts version that will include the changes especially in case using Acts as an external library - There is still a negative shift in qop pull value for low pT particles - Have some plans to improve it later # Backups # Pure Impact of Mass in the Most Probable Energy Loss - Reference: electron mass - Monitored: Incident particle mass (muon as in physmon.py) ## resmean_qop_vs_pT