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ML based reco is an active area of research. In the interest of 
time, I will focus on the MLPF-related publications I’m more 

familiar with.
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ML for HGCal
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Shah Rukh Qasim, Nadezda Chernyavskaya, Jan Kieseler, Kenneth Long, Oleksandr Viazlo et al. End-to-end 
multi-particle reconstruction in high occupancy imaging calorimeters with graph neural networks. https://doi.org/
10.48550/arXiv.2204.01681

true predicted

The physics task involves in using the clustering to predict 
the energy of the particle initiating the clustered shower.

HGCAL-like simulation 
with PU200

Loss function over cluster, 
regressing the energy

https://doi.org/10.48550/arXiv.2204.01681
https://doi.org/10.48550/arXiv.2204.01681


ML for neutral energy
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The full event: a multilayered calorimetric image + tracks. 
Predict the neutral energy deposits.

Di Bello, F.A., Ganguly, S., Gross, E. et al. Towards a computer vision particle flow. Eur. Phys. J. C 81, 
107 (2021). https://doi.org/10.1140/epjc/s10052-021-08897-0 

https://doi.org/10.1140/epjc/s10052-021-08897-0


Multilayered detectors
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Algorithmic reconstruction

1808.02094 
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Simplified particle flow algorithm

https://arxiv.org/pdf/1808.02094.pdf


Simulation to reconstruction
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Calorimeter clustering

credit

• Segment the energy deposits (hits) 
according to the originator particles


• The hits are embedded in a 
complicated feature space 
(Cartesian position, energy, signal 
significance, timing, layer 
information, ...) 


• Showers from different particles 
may overlap spatially


• Standard heuristic approaches 
based on seeding & collecting 
neighbors, typically iterative
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http://cds.cern.ch/record/2036483?ln=en


Sparse representations
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Pata, J., Duarte, J., Vlimant, JR. et al. MLPF: efficient machine-learned particle-flow 
reconstruction using graph neural networks. Eur. Phys. J. C 81, 381 (2021). https://
doi.org/10.1140/epjc/s10052-021-09158-w 

Starting from tracks and 
calorimeter clusters, aim to 
reconstruct the full set of input 
particles.


Inputs are heterogeneous, no 
natural underlying topology or 
associations.

https://doi.org/10.1140/epjc/s10052-021-09158-w
https://doi.org/10.1140/epjc/s10052-021-09158-w
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A simplification: treat the inputs as a homogenous set.
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Test in a real detector
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baseline PF

MLPF

JP, Javier Duarte, Farouk Mokhtar, Eric Wulff, Jieun Yoo, Jean-Roch Vlimant, Maurizio Pierini, Maria Girone. 
Machine Learning for Particle Flow Reconstruction at CMS. ACAT 2021. https://doi.org/10.48550/
arXiv.2203.00330, http://cds.cern.ch/record/2792320 
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Clustering to reconstruction
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In this case, clustering (graph building) is an internal detail, 
not a model target. Reconstructing particles is the physical 
optimization target.
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Computational scalability
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Export and deploy via ONNX. Avoid nonportable code, 
currently testing on AMD, Habana, Nvidia, CPU…



Stacked models
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Graph building can happen at multiple layers in the model.



Truth-level training in CMS
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JP, Javier Duarte, Farouk Mokhtar, Eric Wulff, Jieun Yoo, Jean-Roch Vlimant, Maurizio Pierini, Maria Girone. 
Machine Learning for Particle Flow Reconstruction at CMS. ACAT 2021. https://doi.org/10.48550/
arXiv.2203.00330, http://cds.cern.ch/record/2792320 
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Charged hadrons
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We can improve charged hadron eff/fake-rate and resolution.



Neutral hadrons
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Neutral hadrons now have a clear turn-on and improved resolution.



Jets
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Jet response is compatible between PF and MLPF trained 
on a gen/sim level target.



Common repo
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• MLPF in https://github.com/jpata/particleflow aims at providing


• a set of PF-related datasets for the community in a single repository


• a platform for testing and comparing ML-based reco models for PF under 
comparable circumstances


• computationally scalable baseline models that can be run on various platforms 
for ML engineering studies

https://github.com/jpata/particleflow


Discussion
• Aim towards realistic, open benchmark datasets and 

baseline algorithms! 

• What are the goals of reconstruction? Unique clustering/
segmentation, particle-level physics reconstruction, event-
level (jets, MET) physics reconstruction?


• To what extent can ML for simulation and ML for reco 
approaches inform each other? Are they the inverse of 
each other? Can one construct a model that does both?


• So far, synthetic data (simulation) is driving the efforts. What 
is the role of data-driven approaches, e.g. learning 
representations from data, fine-tuning on specific tasks?
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Backup
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Single particle showers

photon pi0 -> two photons

Data are very sparse!

Belayneh, D., Carminati, F., Farbin, A. et al. Calorimetry with deep learning: particle simulation and reconstruction 
for collider physics. Eur. Phys. J. C 80, 688 (2020). https://doi.org/10.1140/epjc/s10052-020-8251-9
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Multi-task learning

DNNs/CNNs on granular detetors are performant for shower 
identification and energy regression.

photon vs. pi0
resolution, lower 

is better

Belayneh, D., Carminati, F., Farbin, A. et al. Calorimetry with deep learning: particle simulation and reconstruction for collider physics. Eur. 
Phys. J. C 80, 688 (2020). https://doi.org/10.1140/epjc/s10052-020-8251-9
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Particle representation
• The ground truth is a set of simulation particles (p4, ID)


• The input is the set of all calorimeter hits (energy, location)

truth particles

input hits

simulation information

An unknown number of different truth particles 
(segmentation labels).
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Set-to-set problem

ground truth 
simulation input 

particles

prediction 
reconstructed 

particles

Each particle is described by a multi-class label, and is 
embedded in a complex, problem-dependent feature space.

How to compare two sets of arbitrary size with complex features?

How to do it differentiably, in a performant way?
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Energy flow

Patrick T. Komiske, Eric M. Metodiev, and Jesse Thaler; Phys. Rev. Lett. 123, 041801; https://doi.org/
10.1103/PhysRevLett.123.041801

• Use Earth Mover's Distance to 
define a differentiable loss 
between two sets of particles 
described by (E, eta, phi)


• Good theoretical properties, not 
sensitive to soft particles / 
collinear radiation


• Optimal Transport is challenging 
to practically compute on large 
sets
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Object condensation

ground truth particles

input hits

simulation information

Boundedness: the number of truth particles usually cannot be 
larger than the number of inputs (typically it's much smaller).

example assignment

k

j

Each input represents exactly one truth particle, with attractive/repulsive potentials in 
a learned space xj between correct/incorrect assignments.

Kieseler, J. Object condensation: one-stage grid-free multi-object reconstruction in physics detectors, graph, and 
image data. Eur. Phys. J. C 80, 886 (2020). https://doi.org/10.1140/epjc/s10052-020-08461-2

attractive repulsive
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A simplified set-to-set loss
This approximation is fairly model-independent (e.g. not tied to 
GNNs). The exact form of the potentials is a hyperparameter.

Kieseler, J. Object condensation: one-stage grid-free multi-object reconstruction in physics detectors, graph, and 
image data. Eur. Phys. J. C 80, 886 (2020). https://doi.org/10.1140/epjc/s10052-020-08461-2

Can be used for constructing particle reconstruction 
models across a varied number of inputs.
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Realistic clustering with ML
Simulation-level particles → simulation energy deposits → 
reconstructed energy deposits → predict the cluster label 
(or noise) for each hit.
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Saptaparna Bhattacharya, Nadezda Chernyavskaya, Saranya Ghosh, Lindsey Gray, Jan Kieseler et al. GNN-based 
end-to-end reconstruction in the CMS Phase 2 High-Granularity Calorimeter. ACAT 2021. https://doi.org/10.48550/
arXiv.2203.01189 

two tau leptons

https://doi.org/10.48550/arXiv.2203.01189
https://doi.org/10.48550/arXiv.2203.01189


Neutral energy regression 
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The image-based approach is competitive for the cell neutral 
energy prediction compared to the algorithmic baseline.

Di Bello, F.A., Ganguly, S., Gross, E. et al. Towards a computer vision particle flow. Eur. Phys. J. C 81, 
107 (2021). https://doi.org/10.1140/epjc/s10052-021-08897-0 

https://doi.org/10.1140/epjc/s10052-021-08897-0


Super-resolution
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Di Bello, F.A., Ganguly, S., Gross, E. et al. Towards a computer vision particle flow. Eur. Phys. J. C 81, 
107 (2021). https://doi.org/10.1140/epjc/s10052-021-08897-0 

https://doi.org/10.1140/epjc/s10052-021-08897-0


Scalable models
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https://arxiv.org/pdf/2001.04451.pdf

The computational scaling of models on large sets/
sequences is an active topic.

https://arxiv.org/abs/2001.04451



Implementation for sets
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Pata, J. et al. Machine Learning for Particle Flow Reconstruction at CMS. ACAT 2021. https://doi.org/10.48550/arXiv.2203.00330 

https://doi.org/10.48550/arXiv.2203.00330


Disjoint event graphs
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Pata, J. et al. Machine Learning for Particle Flow Reconstruction at CMS. ACAT 2021. https://doi.org/10.48550/arXiv.2203.00330 

https://doi.org/10.48550/arXiv.2203.00330


Interpretability
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• What inputs are relevant for 
a particular model output?


• Compute layerwise 
relevance scores R


• Aggregate along the graph 
structure

“Explaining machine-learned particle-flow reconstruction”; Farouk Mokhtar, Raghav Kansal, 
Daniel C Diaz Javier Duarte, JP, Maurizio Pierini, Jean-Roch Vlimant. NeurIPS 2021, 
Machine Learning and the Physical Sciences, https://doi.org/10.48550/arXiv.2111.12840 

https://ml4physicalsciences.github.io/2021/
https://ml4physicalsciences.github.io/2021/
https://doi.org/10.48550/arXiv.2111.12840

