HGPflow: Particle flow as a Hypergraph learning task

Nilotpal Kakati

On behalf of the HGPflow team

(Francesco Armando Di Bello, Etienne Dreyer, Sanmay Ganguly, Eilam Gross, Lukas Heinrich, Anna Ivina, Marumi Kado, Nilotpal Kakati, Lorenzo Santi, Jonathan Shlomi, Matteo Tusoni)

(nilotpal.kakati@weizmann.ac.il)

IML meeting 18 April, 2023

Reconstructing particles in jets using set transformer and hypergraph prediction networks

Francesco Armando Di Bello ^{1,a}, Etienne Dreyer ^{2,b}, Sanmay Ganguly ³, Eilam Gross ², Lukas Heinrich ⁴, Anna Ivina ², Marumi Kado ^{5,6}, Nilotpal Kakati ^{2,c}, Lorenzo Santi ⁶, Jonathan Shlomi ², Matteo Tusoni ⁶

¹ INFN and University of Genova
²Weizmann Institue of Science
³ICEPP, University of Tokyo
⁴Technical University of Munich
⁵Max Planck Institute for Physics
⁶INFN and Sapienza University of Rome
Received: date / Accepted: date

Weizmann Institute of Science

https://arxiv.org/pdf/2212.01328.pdf

Reconstructing particles in jets using set transformer and hypergraph prediction networks

Francesco Armando Di Bello ^{1,a}, Etienne Dreyer ^{2,b}, Sanmay Ganguly ³, Eilam Gross ², Lukas Heinrich ⁴, Anna Ivina ², Marumi Kado ^{5,6}, Nilotpal Kakati ^{2,c}, Lorenzo Santi ⁶, Jonathan Shlomi ², Matteo Tusoni ⁶

¹ INFN and University of Genova
²Weizmann Institue of Science
³ICEPP, University of Tokyo
⁴Technical University of Munich
⁵Max Planck Institute for Physics
⁶INFN and Sapienza University of Rome
Received: date / Accepted: date

• Focus on Hypergraph (HGPflow)

Weizmann Institute of Science

https://arxiv.org/pdf/2212.01328.pdf

The roadmap...

- Dataset
- The Hyper graph approach (HGPflow)
- Performance
- Future work

- **COnfigurable CalOrimeter simulation for AI** ullet
 - ✓ Open source
 - ✓ PYTHIA8-GEANT4
 - ✓ Nearly hermetic
 - ✓ Easily configurable (json)

- 3 ECAL layers, 3 HCAL layers
- Inner tracker immersed in magnetic field \bullet

Weizmann Institute of Science

- User friendly outpout •
 - Track, cells, topoclusters, truth particles Full truth record of energy deposit ✓ Jet clustering
 - Vearest neighbor graph

https://arxiv.org/abs/2303.02101 Read the doc link

Graph creation

- Single jet (quark/gluon initiated)
- No pileup \bullet

Weizmann Institute of Science

Weizmann Institute of Science

Hypergraphs?

Hypergraph

Weizmann Institute of Science

Hypergraph

Weizmann Institute of Science

Hypergraph

Weizmann Institute of Science

Hyperedges

Hypergraph

Weizmann Institute of Science

Hyperedges

Hypergraph

Weizmann Institute of Science

Hyperedges

Bipartite graph

Incidence matrix

Hypergraph

Weizmann Institute of Science

Incidence matrix

Weizmann Institute of Science

• Particle Flow = Learning a Hypergraph

Weizmann Institute of Science

• Particle Flow = Learning a Hypergraph

• Particle Flow = Learning a Hypergraph

Truth particles (Unknown)

Detector readout

Weizmann Institute of Science

Reconstructed particles

• Particle Flow = Learning a Hypergraph

Truth particles (Unknown)

Detector readout

Weizmann Institute of Science

• Particle Flow = Learning a Hypergraph

Truth particles (Unknown)

Weizmann Institute of Science

Detector readout

• Particle Flow = Learning a Hypergraph

Truth particles (Unknown)

Detector readout

Weizmann Institute of Science

Reconstructed particles

• Particle Flow = Learning a Hypergraph

(Unknown)

Detector readout

Weizmann Institute of Science

Reconstructed particles

Detector readout

• Particle Flow = Learning a Hypergraph

Target Hypergraph

Truth particles (Unknown)

Detector readout

Weizmann Institute of Science

Predicted Hypergraph (Set2Set)

Reconstructed particles

Detector readout

Weizmann Institute of Science

N. Kakati

11

Detector data (Tracks, cells)

Weizmann Institute of Science

N. Kakati

11

Detector data (Tracks, cells)

Encoded data

Weizmann Institute of Science

N. Kakati

11

Detector data (Tracks, cells)

Encoded data

Weizmann Institute of Science

Hypergraph

Detector data (Tracks, cells)

Encoded data

Weizmann Institute of Science

Hypergraph

Detector data (Tracks, cells)

Encoded data

Weizmann Institute of Science

Hypergraph

Encoding

Detector readout

Weizmann Institute of Science

Detector data (Tracks, cells)

Encoded data

Weizmann Institute of Science

Hypergraph

Particles

Incidence matrix

Weizmann Institute of Science

Incidence matrix

Weizmann Institute of Science

Particles 30 GeV Topocluster 10 GeV 40 GeV

Incidence matrix

Weizmann Institute of Science

Particles

Incidence matrix

Weizmann Institute of Science

Particles

Indicator

- Variable number of particles
- Indicator to the rescue!

Always k particles

Indicator

Incidence matrix

Weizmann Institute of Science

 $(n \times n) \rightarrow (n \times k)$

Incidence matrix
Learning the Hypergraph

Recurrently Predicting Hypergraphs

David W. Zhang University of Amsterdam w.d.zhang@uva.nl

TNO

Gertjan J. Burghouts gertjan.burghouts@tno.nl

Aligns well with our Physics motivations

Weizmann Institute of Science

Cees G. M. Snoek University of Amsterdam cgmsnoek@uva.nl

https://arxiv.org/pdf/2106.13919.pdf

Recurrently learning Hypergraph

Recurrence! (X16)

Weizmann Institute of Science

 $G(\mathcal{V}, \mathcal{E}, \mathcal{I})$

raget	E
-------	---

Recurrently learning Hypergraph

Recurrence! (X16)

Weizmann Institute of Science

 $G(\mathcal{V}, \mathcal{E}, \mathcal{I})$

raget	E
-------	---

Recurrently learning Hypergraph

Recurrence! (X16)

Weizmann Institute of Science

 $G(\mathcal{V}, \mathcal{E}, \mathcal{I})$

raget	E
-------	---

raget	E
-------	---

Detector data (Tracks, cells)

Encoded data

Weizmann Institute of Science

Particles

Hypergraph

Proxy properties

With the incidence matrix, we already know a lot about the particles! lacksquare

- For charged particles, \bullet
 - The tracks are a good (but not perfect) representation of the particles
 - Let's use it and improve over it

Weizmann Institute of Science

Weizmann Institute of Science

• E = E1 + E2 = 15GeV

• E = E1 + E2 = 15GeV

Weizmann Institute of Science

$$\eta = \frac{7\eta_1 + 8\eta_2}{15}$$

 \bullet

• E = E1 + E2 = 15GeV

Weizmann Institute of Science

$$\eta = \frac{7\eta_1 + 8\eta_2}{15}$$

 \bullet

$$\bullet \quad \phi = \frac{7\phi_1 + 8\phi_2}{15}$$

N. Kakati

21

• E = E1 + E2 = 15GeV
•
$$p_T = \frac{E}{cosh(\eta)}$$

$$\eta = \frac{7\eta_1 + 8\eta_2}{15}$$

 \bullet

$$\bullet \quad \phi = \frac{7\phi_1 + 8\phi_2}{15}$$

N. Kakati

21

Additional network

Proxy properties Neural Network

 p_T

Weizmann Institute of Science

Correction to proxy properties

Particle $pT = p_T + \Delta p_T$

 Δp_T

Overall architecture

Input

Weizmann Institute of Science

N. Kakati

Output

Neutral particles

- HG can understand overlapping showers more precisely
- Helps in better reconstruction

0.07

0.06

0.05 0.04 -

- . 9.03 9.03
 - 0.02
 - 0.01
 - 0.00

Neutral particles

Weizmann Institute of Science

Neutral particles (photons)

Weizmann Institute of Science

N. Kakati

27

Neutral particles (neutral hadrons)

Weizmann Institute of Science

N. Kakati

28

lacksquare

PPflow is optimized for jet 0.14 resolution,

ML algos were not trained on this \bullet objective

0.1210.10-0.08 م 0.06

- 0.04
- 0.02
- 0.00

Weizmann Institute of Science

Improved Resolution!

Jet constituent

Weizmann Institute of Science

Jet constituent

Weizmann Institute of Science

Generalization (gluon jets)

Similar story as before \bullet 0.14 -HGPflow generalizes pretty well to \bullet 0.12the gluon jets as well! U.10 . 0.08 0.06 0.06 0.04

- 0.00

Interpretability

- Advantages of learning energy-based incidence matrix
 - Inductive-bias towards energy conservation (softmax)
 - Proxies

- Interpretable fake, inefficiency
 - Supervised links b/w particle and input nodes

Weizmann Institute of Science

Nodes (Tracks, topoclusters)

Weizmann Institute of Science

What's next?

What's next?

- Moving onto full event
 - Try training on full events
 - Partition the events and run HGPflow on each partition; combine the output
 - Conserves locality

Pileup lacksquare

Event Display

Reconstruction with HGPflow

Thank you...

Thank you

Data composition

•	Cardinality	tracks -
•	Track	
		topoclusters [10 ¹]
		graph edges [10 ³]
		photons -
		nu. hadrons -
		ch. particles -

Weizmann Institute of Science

Hungarian matching

- Truth particles and predicted particles are both sets
- Need to find matches b/w the two sets of particles

• Hungarian matching with the metric

•
$$\left(\frac{\Delta p_T}{p_T}\right)^2 + \Delta R^2$$

Weizmann Institute of Science

Initialization of the HG

Weizmann Institute of Science

Initialization of the HG

Initialization of the HG

Nodes, $\mathcal{V}_{i}^{t=0} = \text{output of Encoding}$

Hyperedges, $\mathscr{E}_{i}^{t=0} =$ Random initialization from Gaussian noise

Weizmann Institute of Science
Initialization of the HG

Hyperedges, $\mathscr{E}_{i}^{t=0} =$ Random initialization from Gaussian noise

Incidence, $\mathscr{I}_{i,i}^{t=0} = 0$; (no connectivity)

Weizmann Institute of Science

Nodes, $\mathcal{V}_{i}^{t=0} = \text{output of Encoding}$

Refinements

Weizmann Institute of Science

 $G^{t}(\mathcal{V}^{t}, \mathscr{E}^{t}, \mathscr{I}^{t})$

 $G^{t}(\mathcal{V}^{t}, \mathcal{E}^{t}, \mathcal{I}^{t})$

 $\mathcal{J}_{i,j}^{t} = \phi_{I} \left(v_{j}^{t-1}, e_{i}^{t-1}, \mathcal{J}_{i,j}^{t-1} \right)$

 $G^{t}(\mathcal{V}^{t}, \mathscr{E}^{t}, \mathscr{I}^{t})$

 $G^{t}(\mathcal{V}^{t}, \mathscr{E}^{t}, \mathscr{I}^{t})$

 $v_j^{t-1}, \rho_{e \to v}(j, t), v_j^0$

 $G^{t}(\mathcal{V}^{t}, \mathcal{E}^{t}, \mathcal{I}^{t})$

 $G^{t}(\mathcal{V}^{t}, \mathscr{E}^{t}, \mathscr{I}^{t})$

 $G^{t}(\mathcal{V}^{t}, \mathcal{E}^{t}, \mathcal{I}^{t})$

 $G^{t}(\mathcal{V}^{t}, \mathscr{E}^{t}, \mathscr{I}^{t})$

DeepSet

 $G^{t}(\mathcal{V}^{t}, \mathscr{E}^{t}, \mathscr{I}^{t})$

 $\mathcal{I}_{i,j}^t = \phi_I \left(v_j^{t-1}, \right)$

DeepSet $\mathcal{V}^{t} = \phi_{V} \left(\begin{cases} \left[v_{j}^{t-1}, \rho_{e \to v} \right] \right) \right)$

 $\mathscr{E}^{t} = \phi_{E} \left(\left\{ e_{i}^{t-1}, \rho_{e \to v}(i, t) \right\} \right)$

$$(j, t), \quad v_{j}^{0}] | j = 0, 1, 2, ... \}$$

Composition

Weizmann Institute of Science

Charged particle pT resolution

- Improvement in resolution
- Specifically at high pT

Weizmann Institute of Science