

GNN for Deep Full Event Interpretation and hierarchical reconstruction of heavy-hadron decays in proton-proton collisions

Julián García Pardiñas^{1,2}, Marta Calvi¹, <u>Jonas Eschle³</u>, Andrea Mauri^{4,5} Simone Meloni¹, Martina Mozzanica¹, Nicola Serra³

> 1 University and INFN Milano-Bicocca (Italy) 2 CERN (Switzerland) 3 University of Zürich, Switzerland 4 Imperial College London (UK) 5 NIKHEF (The Netherlands)

IML Meeting

```
CERN
18/04/23
```

Outlook

Performance (preliminary)

The algorithm

Motivation

The LHCb detector

Single-arm forward spectrometer, studying the <u>decays of beauty and charm hadrons</u>. Very broad physics program. \rightarrow To be maintained and expanded in future LHC runs.

Excellent vertexing capabilities, momentum resolution and PID performance.

Jonas Eschle

DFEI for LHCb

IML Meeting 18/04/23

Event information and size

Current trigger

OR between decay modes

Store whole event^*

Jonas Eschle

DFEI for LHCb

IML Meeting 18/04/23

Event information and size

DFEI

~ 0.5 signals ~ 140 tracks

- Fully software trigger, CPU + GPU [JINST 14 (2019) 04, P04006].
 - → Online alignment and calibration, offline-quality online reconstruction.

Key developments that enable more <u>ambitious</u> trigger strategies.

DFEI

~ 0.5 signals ~ 140 tracks

- Fully software trigger, CPU + GPU [JINST 14 (2019) 04, P04006].
 - → Online alignment and calibration, offline-quality online reconstruction.

Key developments that enable more <u>ambitious</u> trigger strategies.

~ 0.5 signals ~ 140 tracks

- Fully software trigger, CPU + GPU [JINST 14 (2019) 04, P04006].
 - Online alignment and calibration,
 offline-quality online reconstruction.

Key developments that enable more <u>ambitious</u> trigger strategies.

Fighting the scaling

DFEI for LHCb

Facing the new era with machine learning

Facing the new era with machine learning

Similar developments in other experiments

Full Event Interpretation algorithm at an e+e- collider [Comput.Softw.Big Sci. 3 (2019) 1 6], BELLE2-MTHESIS-2020-006].

GNNs for trigger purposes [see e.g. <u>Eur.Phys.J.C 81 (2021) 5, 381</u>, <u>Frontiers in Big Data 3 (2021) 44</u>].

Facing the new era with machine learning

DFEI

Outlook

Performance (preliminary)

The algorithm

First prototype of DFEI for LHCb, focused on b-hadron decays and charged stable particles.

Motivation

Decays and graph structures

Decay

Global (n vars): event information *nTracks*, ...

Nodes (m_{event} vars): track variables momentum, (PID), ...

Edges (m²_{event}): track relations angle, DOCA, ...

*	

Graph structures

Representation of objects with relations

Arbitrary, sparse/dense relations

Graph Neural Networks

GNN training

e'v'u'updated (by DNN) e, v, u

 v'_i e'_k u'

Node Aggregation

Aggregating information from neighbors

GNN training

e'v'u'updated (by DNN) e, v, u

BLUE updated by **BLACK** not utilizing **GREY**

Node/edge/global features

Different interpretations depending on application

Jonas Eschle

DFEI

IML Meeting 18/04/23

DFEI Overview

Input graph construction

Nodes: all the charged particles in the event.

➡ On average ~140.

Edges: connect particles which are topologically close (see backup for details).

PV₁, PV₂: different proton-proton primary vertices.

1st module: node pruning

2nd module: edge pruning

• Resonances with less than two charged descendants merged with the previous ancestor.

DFEI

Overview and training

Dataset:

- PYTHIA-based simulation, <u>Run 3-like conditions</u>, approximated emulation of LHCb reconstruction.
- Events required to contain at least one <u>b-hadron (inclusive decay)</u>.

PYTHIA configuration

- Proton-proton collisions at 13 TeV
- Avg. number of collisions per event: 7.6

Emulated "Reconstruction" using public Run 3 expectations

- Within LHCb acceptance
- Origin point of the tracks
- Three-momentum of the tracks.
- Position of the primary vertices.

Dataset published

for benchmarking & comparison

10.5281/zenodo.7799169

Dataset:

- PYTHIA-based simulation, <u>Run 3-like conditions</u>, approximated emulation of LHCb reconstruction.
- Events required to contain at least one <u>b-hadron (inclusive decay)</u>.

Dataset:

- PYTHIA-based simulation, <u>Run 3-like conditions</u>, approximated emulation of LHCb reconstruction.
- Events required to contain at least one <u>b-hadron (inclusive decay)</u>.

Dataset:

- PYTHIA-based simulation, <u>Run 3-like conditions</u>, approximated emulation of LHCb reconstruction.
- Events required to contain at least one <u>b-hadron (inclusive decay)</u>.

Outlook

The algorithm

Motivation

Performance: final-state particle filtering

rue number of signal final-state particles

16 - 0

Number of selected final-state particles

1

Confusion matrix, normalized per true class

7

15 12 14 13 11 8

1 2 16 13 15 12 10 9

2

1 3

0 1 0 1 2 1 2 3

3 17 13 16 13 11 7

1 2 3 18 13 16 12 10 7 6

4 19 14 17 12 10 6

20 14 14 12

5 21 15 14

4 23 15

6 21

4 19 13 16

1 3

8

12 11 10 8

12 10 13 12 12 10

12 12 15 13 11 9

1 3

12 12 12 10 9

9

0

1

0 1

1

2

1 2

9 10 11 12 13 14

"single-b-hadron-signal" approach performance *comparable* to the envisaged nominal LHCb strategy for Run 3 [JINST 14 (2019) 04, P04006]

LHCb: 90% sig eff, 90% bkg rej. power DFEI: 94% sig eff, 96% bkg rej. power

Jonas Eschle

DFEI

IML Meeting 18/04/23

Performance: perfect event reconstruction (PER)

- PER efficiency similar to tag-side efficiency for Belle (II)
- Can be easily extended for more target variables!

DFEI capability #2 Automatised and inclusive reconstruction of decay chains.

Timing studies

Implementation

Currently Python & TensorFlow flexible for experimenting

TMVA SOFIE implementation (WIP) Fast Inference System

Possible speed improvements

Simplification of layers, especially first *Approximate convolutions etc.*

Hardware accelerators such as FPGA, GPU,... WIP for GNNs in general

Performance

The algorithm

Motivation

Summary

Increased particle multiplicities for LHCb Upgrades I and II bring big challenges, both for trigger and offline analysis

Paradigm change in trigger: "which <u>events</u>?" → "which <u>parts</u> of the event?"

Deep-learning based Full Event Interpretation

Online application:

- Safely discard rest of event, minimal loss for analyses
- Hierarchical reconstruction of heavy-hadron decay chains

Offline application:

• Tool for powerful background classification & suppression

First prototype of the DFEI algorithm based on GNN *focused on b-hadron decays and charged stable particles* **Very promising performance in realistic conditions!**

Next steps

Algorithmic optimization and architectural choices

- Accuracy and useful information (separation, signal channels, ...)
- Expansion in functionality (neutrals, PID, ...)

Extensive performance studies, crucial for calibration

- In simulation
- In real data

Integration in LHCb trigger

- Export into ROOTs TMVA SOFIE, finishing GNN implementation
- Study usage of hardware accelerators for Upgrade II (FPGA, GPU, ...)

Backup slides

Signal-based trigger vs Full Event Interpretation (FEI)

Signal based

The current LHCb trigger is an **OR between many decay-mode selection lines**.

Since Run2, to reduce the event size, some lines **store only parts of the event which are related** to the specific signal. [JINST 14 (2019) 04, P04006]

E.g.: store the signal + the tracks in the same primary vertex (PV).

FEI

New proposal: try to **reconstruct the band c- hadron decay chains in the event**, in a hierarchical-clustering manner (cluster → unstable particle), **and discard the rest**.

Advantages:

- **Exploit extra correlations** between objects in the event.

- **Bandwidth oriented**: focus on storing as much "useful" information as possible.

- Case of several signals per event as an integral part of the approach.

- Establishment of a basis for an expanded functionality of the trigger: inclusive selections, study of anomalous events ...

Cut-based edge pruning

This veto reduces on average 60% of the total number of edges in the graph. It also reduces connections between signal tracks, but it only leaves ~2% of the signal tracks fully disconnected.

Training dataset: emulating Run3 conditions

Particle collision&decay

The training and performance studies are currently done using **PYTHIA**, with the following configuration:

- Proton-proton collisions at 13 TeV.
- Average number of collisions per event: 7.6.
- Selecting events with at least one b-hadron produced (inclusive decay).

"Detection and reconstruction"

We require all the tracks and the b-hadrons to be **inside the LHCb geometrical acceptance**.

In addition, we **emulate the reconstruction of the following quantities**, using publicly available expectations for the LHCb performance in Run3 (see backup):

- Origin point of the tracks (first measurement in the Vertex Locator).
- Three-momentum of the tracks.
- Position of the primary vertices.

Example of decay-tree simplification used in the prototype

Original chain of ancestors: $\pi^+ \leftarrow \rho(770)^0 \leftarrow \phi(1020) \leftarrow D^+ \leftarrow B^0 \leftarrow B^{*0}$

Simplified chain of ancestors (based on reconstructible vertices):

 $\pi^{\scriptscriptstyle +} \leftarrow \mathsf{D}^{\scriptscriptstyle +} \leftarrow \mathsf{B}^{\scriptscriptstyle 0}$

Performance: timing

Simplistic study (no parallelisation, no hardware accelerators^{*}, algorithm to be further optimised), to **understand which are the slowest parts of the algorithm and how they scale with the total number of particles per event.**

The slowest part is the node pruning, which also has the strongest dependency on the number of particles. \rightarrow Many possible ways of optimisation.

The processing time of the subsequent algorithms is quite stable regarding changes in event complexity.

(*) Study done on a darwin-x86_64 architecture with a 2.8 GHz Intel Core i7 processor.