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. Unfolding of detector effects: why, where, how ?

. Matrix-based methods, parameter setting, treatment of uncertainties

« How to publish unfolded results e.g. in HEPData

. Examples of physics studies using reconstructed-level / unfolded spectra

« Unfolding using ML-based methods:

high potential and many new possibilities!
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Examples of (un)folding problems: PET scan

Positron Emission Tomography

Y. Vardi et al.
http://www.jstor.org/stable/2288030
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Examples of (un)folding problems: top pairs (@ LHC
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Environment and unfolding strategy for jet studies (@ LHC

Typical proton- proton collision: a complex process in a difficult environment
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Beam of partons

Radiation from incoming partons
Primary hard scatter

Radiation from outgoing partons
Hadronization
Multiple Inter. / Underlying event

NP corrections Calibration+Unfolding
Hadronization & UE Jet energy response & resolution

parton level jet particle level jet calorimeter (reconstructed)
level jet
Data/theory
comparison

Plle up

Goal: publish data “corrected for
detector effects” (on average, in the
sense of an estimator), with minimal

bias and minimal model dependence,
with the full information needed for
comparisons with theory predictions
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Unfolding problems: some challenging examples

— p(W): large resolution effects for MET reconstruction & need relatively fine binning
in order to discriminate among theoretical predictions
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— Unfolding in a different context:

inverse Laplace transform to convert

spacelike lattice QCD results into timelike

quantities
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Why unfolding detector effects ?

. Enable mterpretation “by eye” of images

« Direct comparison of measurements from different experiments

. Simplify phenomenological studies

. Data preservation and re-interpretation

— Delicate exercise that has to be done with care
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Detector effects, folding and unfolding
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» Focus on unfolding of detector effects (acceptance correction factorized)

o Unfolding is generally not a simple numerical problem
— Regularization methods are often necessary
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Choice of the phase-space

« Selection defining phase-space at “truth” level — as close as possible to the
reconstructed-level selection: minimize extrapolation to reduce model dependence

o Include over-/under-flow bins when migrations to the region of interest are relevant

— These extra bins are generally not published
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Matrix-based unfolding methods + choice of method & settings

o Maximum likelihood / matrix inversion

e SVD ( + Tikhonov reqularization )

o lterative Bayes-inspired reqularized unfolding (IBU)

e Full Bayesian unfolding

o lterative, dynamically stabilized (IDS) method

o Bin-by-bin correction : d. x (T./R. )MC_potentially large bias by relying on truth MC
(used only when small bin-to-bin migrations & for statistics limited measurements e.g.
Higgs differential Xsec; cross-check with matrix-based method)

o In general, recommended not to (dis)favor some particular method

o Recommended to evaluate the performance of several methods & regularizations and
use the “optimal” one for the given unfolding study

— Take into account: systematic uncertainty related to the unfolding method (bias due to
MC/data shape difference & regularization); impact on statistical uncertainties &
correlations; constraints induced on binning choice
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http://hepunx.rl.ac.uk/~adye/software/unfold/htmldoc/RooUnfoldInvert.html
http://hepunx.rl.ac.uk/~adye/software/unfold/htmldoc/RooUnfoldSvd.html
http://hepunx.rl.ac.uk/~adye/software/unfold/htmldoc/RooUnfoldBayes.html
https://github.com/gerbaudo/fbu
http://hepunx.rl.ac.uk/~adye/software/unfold/htmldoc-dev/src/RooUnfoldIds.cxx.html%23frWLEE
http://hepunx.rl.ac.uk/~adye/software/unfold/htmldoc/RooUnfoldBinByBin.html

Matrix inversion

Folding of signal and background in data:
Enl=v=Ru+p

Unfolding based on matrix inversion:
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— Inversion procedure unbiased, but induces large variances in unfolding result, as well
as strong bin-to-bin (anti-)correlations: further use of the unfolded spectra require very
precise determination of the covariance matrix (arxiv:2308.04221)

— Unfolding is not a simple numerical problem — Regularization methods necessary

— The binning itself provides a regularisation
Beware biases related to large binning (arxiv:2111.01091, ATLAS-CONF-2023-028, arXiv:1711.02692)
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Singular Value Decomposition (SVD)

— Inspired by the matrix inversion, but with regularization:
Suppress effect of small eigenvalues (~noise) + constraint on smoothness of the
unfolded distribution — Regularization (may introduce bias)
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Nucl. Instr. Meth. A 372, 1996 (469)
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Singular Value Decomposition (SVD)

— Inspired by the matrix inversion, but with regularization:
Suppress effect of small eigenvalues (~noise) + constraint on smoothness of the
unfolded distribution — Regularization (may introduce bias)
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An Iterative, Bayes-inspired Unfolding Method
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— Note: P27 depends on the shape of
the truth distribution in MC

150 200
True

1% unfolding, where the original transfer matrix is used
— 1)Transfer matrix improvement (hence of the unfolding probability matrix)

Reweight the truth MC distribution based on previous unfolding result.

2)Improved unfolding

— Choice on number of iterations = regularization (recommendations from previous
slides apply)

— Other methods exist, like e.g. dynamical local regularization in IDS (treatment of
fluctuations in each bin, at each step of the procedure)
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[terative methods: choice of the number of iterations

« Number of iterations = regularization parameter: optimising variance / bias
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— Matrix Inversion

|l||||||||||||||I|||l||l|||l||l|I||I|l||||I||I|||

_CD_IIII|IIII|IIII|IIII|IIII|II]I|IIII|IIII|IIII|IIII_
(62]

Jet multiplicity
« Compare data and the modified reconstructed MC: see how much information is left to
be propagated from the data shape to the truth MC shape

— bin-by-bin comparison or using a X2 (see e.g. arxiv:0907.3791, ATLAS-CONF-2023-028)

« Suggestion in IBU publication: compare results from consecutive steps (NivA 362, 487 (1995))
— risk of ~small changes between consecutive steps, while having a significant bias
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https://academiccommons.columbia.edu/catalog/ac:164089

Statistical uncertainties

o Due to both data and MC

. Propagated using pseudo-experiments done separately/simultaneously for data and MC

(s=13TeV, 81nb'-32fb"' ATLAS arXiv:1711.02692

— Bootstrap method Dijets Inclusive jets
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. Publish covariance matrix and/or a series of results based on each pseudo-experiment
(i.e. Bootstrap replicas)

« Some unfolding methods provide estimates of the stat uncertainties

— recommend cross-check with pseudo-experiments
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https://arxiv.org/abs/1711.02692

Propagation of systematic uncertainties from inputs

« Modify mput (pseudo-)data spectrum by 16 of the uncertainty, re-do unfolding and
compare with nominal result

— Can also use 1...56 scans or pseudo-experiments

ATLAS --- Nominal
C Quantiles
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— Can shift reconstructed spectrum in transfer matrix instead of input spectrum:

switched positive and negative variations

o For resolution uncertainties, perform smearing of the transfer matrix: smearing factor
given by quadratic difference between resolution enhanced by 16 and nominal

resolution
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http://arxiv.org/abs/1410.8857

Propagation of systematic uncertainties from inputs

» Bootstrap method to evaluate statistical uncertainties on the propagated systematics +

rebinning/smoothing; (arxiv:1312.3524)

« Alternative propagation using pseudo-experiments (more difficult to probe e.g. 5o
effects)

« Alternative propagation option: include uncertainties as nuisance parameters in the
definition of the response matrix + profile likelihood or Bayesian marginalization
(often used for folding/template fits) (see e.g. arxiv:2304.03053)
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B. Malaescu

Propagation of systematic uncertainties from inputs

Split of systematics in sub-components (fully correlated in phase-space, independent

between each-other) allows to evaluate correlations between different phase-space

regions and between different measurements

Information made available in HEPData tables (http://hepdata.cedar.ac.uk/)
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ly|<0.5

0.5<ly|<1.0

1.0<ly|<1.5

ATLAS
Inclusive jets

1.5<]y|<2.0

2.0<ly|<2.5
2.5<|y|<3.0

Correlation total uncertainty

arXiv:1711.02692



https://arxiv.org/abs/1711.02692

Tests of the unfolding

o “Technical closure test” — same MC for the transfer matrix and input distribution
(pseudo-data) - expect perfect agreement between unfolding result and truth MC

o “Data-driven closure test” — allows to evaluate a systematic related to the unfolding
method and the choice of regularization (see next slides)

o “Linearity test” — MC samples with various truth inputs; check linear dependence
between unfolded and truth values of a quantity of interest

o “Pull test” — relevant only for unfolding methods providing an estimate of the
statistical uncertainties (i.e. not from pseudo-experiments) - tests their reliability
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Data-driven closure test: motivation, procedure, example

. In-situ (i.e. realistic) determination of the unfolding uncertainty related to the
data/MC shape difference and to the regularization :

- reweight true MC by smooth function: improved data/recoMC agreement
- unfold the reweighted reconstructed MC

- compare with reweighted true MC
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Method introduced in arXiv:0907.3791, used in arXiv:1112.6297 etc.
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Extraction of Physics information from measurements

NZ" 15: | .C: T T T T T LI, P R | 1 1 1 1
L2 0 S O'Eur.Phys.J. C72 (2012) 2041
d"’) 145_ gi y ( ) SM
= & 5!
12F g
HE ]
10F -
9F b T e 0<|y<03
= ! m 03<]y|<0.8
8:_:% ! : 0.8<|y] <12
= ! v 12<|y|<21
TE ; 21<|y|<2.8
- : o 28<|y|<3.6
6 ; 36<|yl<44
5: | 1 | — ll : 1 1 1 1 | | | ll 1 | | 1
102 10°

— Involves using information on uncertainties and their correlations (between various
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measurement bins), keeping in mind that there are uncertainties impacting them too
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Limits on New Physics using unfolded distributions

. Explore BSM physics directly at particle level

Contact Interaction Model (CI)
New force mediated by heavy particle
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© 908 . ATLAS % 2 1 E T frerrmrreraeer E|
| 10° R - [rat-asm o E  JLE
10* e, \s=7Tev E y 4 il A
< 10° V<05 '.50-5.: | anti-k, jets, R=0.6 = 107 g E
E 102 Data with ‘fo:. = SR 7 3
B 10 stat. unc. .y J L ':," """ Obs _
° NLO pQCD (CT10) | %o, 3 102k - Exp =
§ NLOPpQCD (CT10) ! . E E g
118_2 " plus Cl (A = 6.5 TeV) [ E ; t15 ]
O - 5 R '::l
S o : ¢ | ArLAs 120
8— E iHigh mass | ] | JL dt=45f0" ]
ZI ok iregion 3 ! \s=7TeV 7
% s i E anti-k; jets, R=0.6 E
o B ] y*<0.5,m,>1.31TeV
g 1 = | |
E L 8 9 10
-1
3x10 1 2 3 4567 A [TeV]

. Full frequentist analysis (CLs), with generalized > as test statistic

— Accounts for correlations and asymmetries of uncertainties (stat. & syst.)

. Limits similar to the ones obtained by dedicated searches
(comparing reconstructed-level data with theory predictions folded with detector effects)
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Generic Gaussian signals: folding-based method

— Limits on generic Gaussian signals can be re-interpreted in terms of various signal models
— Previously studied at reconstructed-level — hadron-level preferable

— Folding method using MC-based transfer matrix allows to factorize physics & detector

effects (publish limits more straightforward to use)
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ML-based unfolding

. Binned (matrix-based) unfolding applicable up to 2-3 observables simultaneously (some of

them being impacted by resolution effects more than others) : convert nD to 1D unfolding
. ML-based methods allow to enhance the dimensionality & obtain results event-by-event:

enables computing secondary quantities arxiv:2109.13243 | | |
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ML-based unfolding

. ML-based methods allow to enhance the dimensionality & obtain results event-by-event:
enables computing secondary quantities arxiv:2109.13243

. ICINN: iteratively improve (reweight) MC simulation;
publish unfolded distributions for each data event
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See talk by Mathias Backes
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Instead of Conclusions

. Numerous topics on which we can have interesting discussions

Thank you !!!



