
Biases and Pitfalls in Unfolding

Igor Volobouev

Texas Tech University

i.volobouev@ttu.edu

July 27, 2023

IML Working Group meeting on unfolding

Igor Volobouev (TTU) Biases and Pitfalls in Unfolding July 27, 2023 1 / 13



Why Unfolding is Difficult

The typical formulation of the unfolding problem is

g(y) =

∫
K (y, x)λ(x)dx, (1)

where g(y) is the intensity of the observed Poisson process in the
space of “smeared” variables y, and λ(x) is the intensity we want to
reconstruct in the “true” space x. K (y, x) is known as the kernel or
response function. The formulation does not have to be linear but in
HEP problems linearity in λ is usually assumed.

This formulation is intrinsically infinite-dimensional. λ(x) is
an infinite-dimensional parameter whose dimensions are labelled by x
(think field theory). Naturally, an infinite-dimensional parameter can
not be reconstructed from finite amount of data. We must make
dimensionality reduction assumptions, i.e., regularize.

I prefer to think that “regularization” is any assumption or device
that reduces the number of degrees of freedom in the problem. Then,
for example, it becomes obvious that binning is regularization.
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A Simple Illustration

In Eq. 1, assume K (y, x) = N (y − x , σ2), where N (µ, σ2) stands for
the normal distribution with mean µ and variance σ2. 1-d problem
with a Gaussian resolution function and 100% efficiency.

If g(y) was exactly known, the Fourier transform of λ could be
obtained from λ(ω) = g(ω)/K (ω). Note that, in this case,
K (ω) = e−σ2ω2/2.

As g(y) is not known, the closest available approximation is the
characteristic function of the empirical Poisson intensity of the
observed sample, ρe(y) =

∑N
i=1 δ(y − yi ). Then

ρe(ω) =
∫
ρe(y)e

iωydy =
∑N

i=1 e
iωyi .

The ratio ρe(ω)/K (ω) becomes arbitrarily large as ω → ∞. The
“naive” method of estimating λ(ω) as ρe(ω)/K (ω) thus fails
miserably: the high frequency components of the statistical noise
contained in ρe(ω) are multiplied by an arbitrarily large factor so that
ρe(ω)/K (ω) is not even square-integrable.

“Deconvolution density estimation” is the term to google.
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Regularization

All standard approaches to regularization basically do the same thing:
they suppress high frequency components of statistical fluctuations at
the cost of simultaneously suppressing similar components of the
signal. While such approaches are based on the reasonable
assumption that the ”true” distributions we are reconstructing should
be smooth, there are costs in terms of bias and loss of information.

The regularization “strength” is usually chosen to optimize some form
of the bias-variance trade-off.

The real problem with regularization is that the risks associated with
the bias and loss of information become well-defined only at a later
stage, when theoretical models are fitted to unfolded data. In the
current practice of HEP data analysis, there is a disconnect between
the unfolding stage and the model fitting stage. Construction of
an optimal solution at the unfolding stage (akin to the Wiener filter)
is thereby precluded.
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Approaches Based on Binning

There is a difference between binning and discretization. Binning
assumes integration of all relevant functions over some intervals.

Binning is regularization! Response function → response matrix:

Kij =

∫
y∈bi

∫
x∈bj K (y, x)λ(x)dxdy∫

x∈bj λ(x)dx
(2)

The cost of binning is twofold: loss of information about signal
frequencies beyond the Nyquist frequency of the bins (important for
sharp peaks) and, as true λ(x) is unknown and has to be guessed
beforehand, introduction of the “wide bin bias” into the response
function. The fraction of events migrating out of the bin to the left
and to the right depends on whether the events themselves are
concentrated near the left or the right edge of the bin (important for
steeply falling spectra).

Additional regularization becomes necessary if the condition number
of Kij is large and the equation gi =

∑
j Kijλj is ill-conditioned.
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The Problem of Nuisance Parameters

K (y, x) is a conditional probability density (with the caveat that it
incorporates efficiency): K (y, x) = K (y|x). In real HEP applications,
we almost always have K (y, x) = K (y|x,θ). The character of K
dependence on nuisance parameters θ can be further classified as

� The calibration problem: elements of θ are independent from the
particle process under study. Not specific to unfolding.

� The problem of insufficient causation: elements of θ depend on the
process under study. In the absence of direct causation of y by x,
additional assumptions invade the basic formulation of the unfolding
problem. Naturally, unfolded results will depend on these assumptions.
A simple example: unfolding of jet pT spectra is affected by their
assumed η spectra as the jet pT resolution is a function of both pT
and η.

Together with the wide bin bias, the problem of insufficient causation
affects a number of LHC analyses which derive their response
functions under the Standard Model assumptions and then pretend
that the unfolded results could be used to constrain BSM physics.
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Other Issues

Statistical uncertainties in the determination of K (y, x) and Kij .

Correct handling of the edge effects requires special attention.

For the χ2 statistic calculated in binned scenarios, nDoF ̸= nBins.

If the choice of regularization strength is data-driven (as it should
be), an additional statistical uncertainty has to be assigned to it. This
uncertainty is not taken into account by the error propagation
techniques built into the current software.

A number of techniques incorporate a penalty on deviation from
a prior, e.g., implementations of SVD and Richardson-Lucy (a.k.a.
D’Agostini) unfolding in “root”. Results obtained with these methods
can be severely biased towards that prior. As priors are usually
obtained by fitting models to previous results, proper combination of
the new results with the old ones is no longer possible.

The null space and the effective null space of the problem are
virtually never analyzed. This subject remains unexplored in the
context of HEP data analyses.
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The Danger of Biased Estimators

The statistical uncertainties of biased estimators are not subject to
the Cramer-Rao bound and do not represent the total error. The
statistical covariance matrices determined by linear error propagation
are ill-conditioned or singular. The example below comes from
arXiv:1408.6500 (Richardson-Lucy unfolding with smoothing).
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In principle, the bias can be accounted for by the appropriate
systematic uncertainty. In practice, determination of this uncertainty
is difficult and very subjective.

The degree to which underestimation of total uncertainty is
detrimental depends on the subsequent use of the unfolded result.
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New Unfolding Techniques

Two basic principles should be kept in mind when new unfolding methods
are developed:

Reasonable frequentist coverage has to be demonstrated.

The unfolded results have to be presented in such a manner that
results obtained by multiple independent measurements can be
combined.

Techniques that do not adhere to these principles are not mature enough
for LHC data analyses. If your purpose is obtaining physics results (rather
than development of statistical and/or ML unfolding methodology), don’t
waste your time on them.
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Unfolding with ML

A Living Review of Machine Learning for Particle and Nuclear Physics
has the “Unfolding” section which currently lists 21 references. Two
of them refer to early publications proposing unbinned unfolding
techniques that do not rely on ML.

My own personal quick filter: search the paper pdf for the terms
“covariance” and “correlation” referring to matrices as well as for the
word “coverage” referring to frequentist coverage. If none of these
terms are present in the body of the manuscript, the method that the
paper is advocating is probably not ready for the prime time.

6 out of 19 papers pass the quick filter. None of them attempts
a frequentist coverage study.
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https://github.com/iml-wg/HEPML-LivingReview


Comments on OmniFold

The original OmniFold paper (see also representative talks by the
authors here and here) did not describe how to derive statistical
uncertainties of the unfolded results and did not pass the quick filter.
Nevertheless, OmniFold was used in this experimental paper by the
H1 Collaboration which, of course, had to take care of the statistical
uncertainties. They were derived by resampling the data 100 times
(MC sample was kept fixed).
How many samples are needed in order to estimate a covariance
matrix reliably? This is actually an interesting question. The answer
here states that, for a n × n matrix, you need at least 25n samples.
H1, grouping the measured cross-sections into 25 bins, falls short.
Biases (and the corresponding systematic uncertainties) due to the
introduction of regularization remain a mystery. OmniFold estimates
the density ratio between the data and the simulation by a classifier
DNN. This density ratio estimate is regularized by choosing the
network architecture and the stopping rule for classifier training. At
least to me, the consequences of this are not at all transparent.
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https://doi.org/10.1103/PhysRevLett.124.182001
https://indico.cern.ch/event/1001442/contributions/4209686/attachments/2188015/3697305/PTK_2102_CMS_ML_Forum_compressed.pdf
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https://doi.org/10.48550/arXiv.2108.12376
https://indico.cern.ch/event/1252131/contributions/5268298/attachments/2592165/4481184/covmat_estimation.pdf


Is There a Better Way to Unfold?

Note that, when theoretical models are fitted to unfolded results,
regularization happens automatically, simply due to the fact that
reasonable models have a limited number of parameters. Therefore,
the goal of unfolding should be to present results in a manner that
minimizes bias and loss of information and avoids regularization as
much as possible (this line of thought originally comes from Volker
Blobel).
Since we can’t determine λ(x) in an unbiased manner, a better
approach is to represent the unfolded results by estimating a set of
functionals derived from λ(x). Ideally, the functionals should be
chosen in such a way that their estimates possess the following
properties:

1 Unbiasedness
2 Proper frequentist coverage
3 Minimal loss of information by the complete set
4 Mutual statistical independence (or, at least, absence of correlations)

I call this the delayed regularization approach. More details about it
can be found in this talk.
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https://en.wikipedia.org/wiki/Functional_(mathematics)
https://indico.cern.ch/event/904488/contributions/3814643/attachments/2015285/3369847/unfolding_goals.pdf


Conclusions

In unfolding scenarios, care and sofistication are necessary to extract
maximum amount of information from your data and to present it in
a statistically sound manner. There is no one-size-fits-all recipe.

While the flexibility and power of ML tools promise substantial
improvements, the developed methods must stay firmly grounded in
solid statistical principles.

In classical unfolding techniques, the cornerstone principle of the
regularization strength selection is the bias-variance trade-off. It
would be very useful to elucidate it in the ML-based unfolding.

Perhaps, more thought should be given to the minimum
regularization/delayed regularization approach.
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