v²-Flows

Fast and improved neutrino reconstruction in multi-neutrino final states with conditional normalizing flows

Matthew Leigh

Johnny Raine Knut Zoch Tobias Golling

Top Working Group Plenary – 24/11/22

Problem

- Total neutrino transverse momenta is often measured by the experimental proxy p_T^{miss}
- No information about the longitudinal momentum
- Transverse momenta in final states with more than one neutrino are under-constrained

Our Approach

- Can't simply train a network like it's a regression task
- There is missing information which can not be recovered
- Many solutions will still be possible
- But not equally likely

• We use a **conditional normalizing flow** to learn the conditional probability density of solutions for each event

Background

- Conditional normalising flows parameterise an invertible map from x to z given y as conditioning inputs
- Training: Model runs forward for maximum likelihood objective

$Loss(y,x) = -\log(p_X(x|y))$ target = $-\log(p_z(f_\theta(x|y))) - \log|\det(J(x|y))| p_X(x|y)$

• **Sampling:** Model runs in reverse giving p(x|y)

Previous work

- Original paper
- Single leptonic $t\bar{t}$ decay Only longitudinal momentum is unknown

Ardizzone et al. "Analyzing inverse problems with invertible neural networks", ICLR 2019. 9

v²-Flows Overview

- Goal was to extend our work to multiple neutrinos in the final state
- **Dilepton** $t\bar{t}$ events two neutrinos
- Trained a flow to generate neutrino candidates given event level information
- Compared to two reference methods:
 - Neutrino Weighting
 - Ellipse method
- <u>ArXiv:2307.02405</u>
- Project GitHub
- Zenodo Dataset

v

1. Neutrino Weighting: <u>Reference ATLAS analysis</u>

$$(\ell_{1,2} + \nu_{1,2})^2 = m_w^2 = (80.38 \,\text{GeV})^2,$$

 $(\ell_{1,2} + \nu_{1,2} + b_{1,2})^2 = m_t^2 = (172.5 \,\text{GeV})^2,$

- Make assumptions on W and top mass
- Iterate through multiple event configurations
 - η^{ν} and $\eta^{\overline{\nu}}$ individually stepped through
 - Jet/lepton association
 - Jet smearing
 - etc
- Solve the mass constraint equations yielding $p_{
 m T}^{
 u}$ and $p_{
 m T}^{\overline{
 u}}$
- Keep solution that yields highest weight

$$w = \exp\left(-\frac{||\vec{p}_{\mathrm{T}}^{\mathrm{miss}} - \vec{p}_{\mathrm{T}}^{\nu\bar{\nu}}||_{2}^{2}}{2\sigma^{2}}\right)$$

1. Neutrino Weighting: <u>Reference ATLAS analysis</u>

Keep solution that yields highest weight

2. Ellipse Method: Betchart et. al.

- Geometric approach to analytically constrain neutrino kinematics
- Requires assumption on W and top mass
- Requires assumption of jet/lepton association
- Solution set for single neutrino defines the surface of an ellipse

2. Ellipse Method: <u>Betchart et. al.</u>

- Geometric approach to analytically constrain neutrino kinematics
 Biases results
- Requires assumption on W and top mass
- Requires assumption of jet/lepton association ______ Dependent on association
- Solution set for single neutrino defines the surface of an method ellipse

Fails to find solution in approximately 20% of events

v²-Flows Overview

- Feature extraction is performed using a transformer with class attention
- Each event is represented as a point cloud can scale to any input multiplicity

Results - Kinematics

Kinematics

• Neutrino kinematics

Kinematics

• Neutrino/anti-neutrino separation

500

 p_{T}^{t} [GeV]

600

Kinematics

• W and top kinematics

Results - Unfolding

Unfolding

- Evaluate a typical downstream impact of improved neutrino reconstruction
- Performed unfolding following a reference ATLAS analysis
- Double differential measurement of $m_{t\bar{t}}$ and p_{T}^{t}
- Used v²-Flows and the reference methods to create neutrino candidates

Unfolding

Response matrices

Unfolding

- Performed unfolding with RooUnfold (SVD)
- Looked at the overall uncertainties for each bin of the unfolded distributions

Conclusions

- Have extended our method to work on final states with multiple neutrinos with a more generalizable architecture
- v²-Flows leads to reduced biases and more accurate event reconstruction compared to reference methods
- More details and results in our <u>latest paper</u> include sensitivity to mass shifts

• Are now developing a tool to run in an Athena environment

Thank You

Mass Shift

- Unlike the reference methods v²-Flows makes no hard assumptions on W and top mass
- Would still be implicitly learned from training data
- Wanted to test if the v²-Flows would be sensitive to a shift in the top mass
- Produced additional test sets with m_t set to 171 and 175 GeV

Mass Shift

Kinematics

• Full *tt* system

Robustness to Generator

Robustness to Generator

Failure of standard regression

Object Features

Category	Variables	Description
$\overrightarrow{p}_{\mathrm{T}}^{\mathrm{miss}}$	$p_x^{ m miss},p_y^{ m miss}$	Missing transverse momentum 2-vector
Leptons	$p_x^\ell, p_y^\ell, p_z^\ell, \log E^\ell$ q^ℓ ℓ^{flav}	Lepton momentum 4-vector Lepton charge Whether lepton is an electron or muon
Jets	$p_x^j,p_y^j,p_z^j,\!\log E^j$ isB	Jet momentum 4-vector Whether jet passes b -tagging criteria
Misc	$N_{ m jets},N_{ m bjets}$	Jet and b -jet multiplicities in the event

Network Architecture

