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Conditional Invertible Neural Networks (CINN)

U out U
ur = (v1 — t1(uz2,c)) @ exp(s1(u2,c)) v = u1 ® exp(s1(uz,c)) + t1(uz,c)
uz = (v2 — t2(v1,c)) @ exp(sz2(v1,c)) v2 = u2 © exp(s2(ve,c)) + t2(v1, )

Source: arXiv [1907.02392]
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cINN Unfolding
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cINN Unfolding

Unfolding an EFT example
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cINN Unfolding

Unfolding an EFT example
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e Extreme toy example with large MC-data-differences and significant detector effects

e cINN unfolded distribution shows a strong bias towards the MC truth

pitn) = 2

_ p(rlt) - p(®)

)

with

t = truth, r = reco

= lterative approach needed
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lterative Approach

Simulation Experiment
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Unfolding an EFT example

Advantages:

e Structures present in the data
are encoded implicitly in the
MC Truth

e General similarities to matrix
based iterative bayesian-like
unfolding

e Maintain event-wise probabilis-
tic distributions
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Unfolding an EFT example

Results for the Iterative Approach
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e Construct an analytically solvable toy model

e Use Bayes theorem to construct pseudo-
inverse:

p(rlt) - p(®)
p(er) = B0

o Apply pseudo-inverse to measured distribu-
tion:

pult) = / p(tr)pag (r)dr
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Results for the Iterative Approach
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e Apply pseudo-inverse to measured distribu-

m e tion:
1l e ‘ﬁﬁﬂ pul®) = [ pltlrIpas (r)ar
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Unfolding an EFT example
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Unfolding an EFT Process

e Simulating the process
pp — Zyy with Z — p~pt

e MC — pure SM
e Data — SM + EFT contribution of

Lrs = L8 B, B B, B*?

o Crs 2
with A = Tova

e Applied detector smearing:

Apr = pr - /0.0252 + p3.- 3.5 105

Z/y* z

10°¢

—— Data Truth
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Unfolding an EFT example
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Unfolding an EFT Process

e Simulating the process

pp — Zyy with Z — p~pt
2% .:.. 10°
e MC — pure SM . W |
- ’ [ |
e Data — SM + EFT contribution of | -
C 75
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Unfolding an EFT Process

—— Data Truth
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Unfolding an EFT Process
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= Unfolding of the p distributions of both muons simultaneously is possible
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Single event distribution

Iterative cINN Unfolding

Unfolding an EFT Process

x107!
—— Measured event at 45 GeV
—— IcINN It.1
— IcINN It.2 ’_l
IeINN It.3 [
—
20 30 40 50 60

pr [GeV]

=> Single event unfolded distributions match the overall unfolding result
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Unfolding an EFT example
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Matrix-based Single Event Unfolding

conditional Invertable Neural Networks

Unfolding an EFT example
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= Possibility for cross-checks with ICINN Unfolding
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Conclusion / Outlook
e Implementation of an iterative cINN unfolding algorithm and application to a physical example

e Central Idea: still obtain the cINN result of a probabilistic unfolded distribution while iteratively reducing the bias
towards the MC simulation

o Next steps: single event unfolded distribution cross-checks; application of IcINN to real experimental data

Unfolding an EFT example

ML Unfolding based on cINNs using lterative Training Mathias Backes

12/12



conditional Invertable Neural Networks Iterative cINN Unfolding Unfolding an EFT example

Thank you for your attention!
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Additional Material
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Analytic Toy Example

e Gaussian smearing:

r— s))?
i) = g e (~ ).

p(rft) - p(t)
p(r)
Unfolding a measured distribution p s () using Gaussian functions for p(r), p(t) and ps(r):

1 r—(t+ps)? E—pw)?  (r—pr)? (r—pm)?
t) = t dr d — _
po®) = [ pampastiar = o |0 o [ares (<20 5

e Evaluating leads to gaussian unfolded distribution with:

2 2 2 .2 4
Pm0F + peo? — psod \Oioy T 0y05 + 050t

Hu = ) Ou =
02 + o2 02 + o2

e Bayes theorem:

p(tlr) =
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cINN Loss function

Minimize loss function:

L= _<10gp(0|$7y)>:v~f,y~g
—(log p(10,y))zn f,y~g — (108 P(O1Y))y~g + (log P(x[Y))zn f,y~g
—(log (|0, ) e~ fy~g — 02 4 const.

dx

7(10gp(2(1)|97 y)>z~f,y~g - <10g >zwf,y~g —A 92 ~+ const.

6 = cINN parameter, x = Parton Level, y = Detector level, z = Latent space variable

Source: arXiv [1907.02392]
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