The GRAiNITA project

S. Barsuk¹, D. Breton¹, A. Boyarintsev², I. Boyarintseva^{2,1}, H. Chanal³, A. M. Dubovik², G. Hull¹, A.Kotenko⁴, J. Lefrancois¹, S. Monteil³, M-H Schune¹, N.Semkiv⁴, I. Tupitsyna², M. Yeresko³

¹ Université Paris-Saclay, CNRS-IN2P3, IJCLab, Orsay, France
² Institute of Scintillation Materials of the National Academy of Science of Ukraine, Kharkiv, Ukraine
³ Université Blaise Pascal, CNRS-IN2P3, LP-Clermont, Aubiere, France
⁴ Kyiv National Taras Shevchenko University Ukraine

+ Carlos Dominguez Goncalves, Brice Geoffroy, Miktat Imre, Bernard Mathon, Sebastien Olmo, Denis Reynet (Mechanics)

The overall idea (in a nutshell)

Inspired by LiquidO technique for neutrino detector (A. Cabrera et al. LiquidO Commun Phys 4, 273 (2021))

Typical sampling calorimeters: $\frac{\sigma_E}{E} \sim \frac{10\% - 15\%}{\sqrt{E}}$

Crystal calorimeters : 1%-2% $\sigma_{\rm E}$

$$\frac{\sigma_E}{E} \sim \frac{170^{-2.76}}{\sqrt{E}}$$

Requirements:

- fine sampling
- scintillation light locally contained ٠

Shashlyk-type calorimeter

ZnWO₄

$ZnWO_4$ possible candidate:

- LY= 10kph/MeV
- Density 7.62
- Index n=2.1
- $\tau = 20 \ \mu s$
- $\lambda_{max} = 480 \text{ nm}$
- grain size : 0.5 mm 1 mm

GEANT4 simulation ZnWO4 + CH2I2 cubes (random position)

1mm cubes $\frac{\sigma_E}{E} \sim \frac{2\%}{\sqrt{E}}$

ISMA has done specific R&D and has produced grains & plates of ZnWO₄

- "flux method" production of ZnWO₄ is under control
- ~ 1kg of ZnWO₄
- grains of BGO (200 g)
- small plates of BGO & of ZnWO₄

Towards a 16 fibers test bench

- Active volume = $2.8 \times 2.8 \times 6 \text{ cm}^3$ (~200 g of ZnWO₄)
- Fibers spacing: 7 mm
- 16 fibers read-out by SiPM
- $\circ~$ Possibility to repeat the study with the well known BGO
- Blue/Green LED injected in the middle (& UV LED with a quartz fiber ?)
- Cosmic rays triggering

What will we learn ?

time

- Number of photo-electrons by MeV on the SiPM (need 2.5k to 10k per GeV to reach 1
- to 2 % energy resolution)
 - \circ Study the uniformity of response (μ close to a fiber or half-way)
- Study the angular dependence of response

Cosmic rays test bench design

1) Two scintillators (below and above) : determine the number of photo-electrons

2) + TimePix (1.4 x 1.4 cm²) : precise knowledge of the muon position and angle (0.3 deg angular)

5

Understanding before the cosmic test: WLS fiber matching

A set of different fibers provided by Kuraray: Y11(200), O2(100), O2(200), O2(300), R3(300)

Test of the ZnWO4 WLS fiber matching:

VLMU35CB2.-275-120 λ: 270 – 280 nm

Amount of light created by the UV LED is different from those created by ionizing particles but the wave length is very similar

O2(200) is a good candidate Also working well with BGO

Optimization in close contact with Kuraray

O2(100)

Understanding before the cosmic test: amount of light (1)

detailed test of the ZnWO4/O2 matching using a small size prototype -Pulsed green light from an LED injected by a clear fiber depolished in the central 1cm

-Light collected with a O2 fiber placed 4 mm far from the injection point

Box surrounded by black fabric

3 configurations:

'Standard' LED intensity

	Charge [pC]	RMS [pC]
Air	44	13

Higher LED intensity

	Charge [pC]	RMS [pC]
Air	70	13

 $\frac{RMS}{Mean} = \frac{1}{\sqrt{N_{phe}}}$

About 3 pC per photo-electron

Light collection not very efficient

'Standard' LED intensity

	Charge [pC]	RMS [pC]
Air	44	13
BGO	118	22
ZnWO4	76	18

About 3 pC per photo-electron

Higher LED intensity

	Charge [pC]	RMS [pC]
Air	70	13
BGO	185	25
ZnWO4	122	18

More chance to collect light with the grains

Slightly less light with ZnWO₄ (but not too bad)

Understanding before the cosmic test: light propagation

The light is passing through many grains before being caught by the WLS fiber.

To measure it: compare the arrival time of the signal when the jar is empty and when the jar is filled with $ZnWO_4$

	∆t (ns)
BGO - Air	0.4 +/2
ZnWO4 – Air	1.0 +/2

similar numbers with the 2 LED intensities

average light path in $ZnWO_4$: ~ 20 cm !

The injecting fiber is 4 mm away from the WLS fiber

Understanding before the cosmic test: amount of light (2)

The small prototype is wrapped with VM2000 specular reflector to increase the light collection efficiency

Green light injection fiber

O2 fiber

'Higher' LED intensity

	With black fabric	
	Charge [pC]	RMS [pC]
Air	70	13
BGO	185	25
ZnWO4	122	18

About 3 pC per photo-electron

Empty container vs Container filled with BGO / $ZnWO_4$: similar charge A good fraction of the light captured in the configurations with grains

Very positive in view of the cosmic test !

Studies for the Pulse Shape Discrimination

Two components (one fast, one slow) for the scintillation decay time in inorganic crystal

Higher ionizing particles (low E proton) : higher fraction of fast component

With ZnWO4: clear difference between γ and α (https://arxiv.org/pdf/nucl-ex/0409014.pdf)

Type of irradiation	Decay constants, μs		
	$ au_1$ (A ₁)	$ au_2$ (A ₂)	$ au_3$ (A ₃)
γ ray	0.7(2%)	7.5 (9%)	25.9 (89%)
α particles	0.7 (4%)	5.6(16%)	24.8 (80%)

An example of the 10 GeV π^+ cascade

GEANT4 simulation

Electromagnetic $[e^-, e^+, \gamma]$ - on average 53.7% of the total energy;

Hadronic [all the rest] - on average 46.2% of the total energy;

correlation is present !

Conclusion

 A cosmic rays test should be done before the end of 2023

 \Rightarrow a more complete proof of concept

• Started the study of potential PSD

backup slides

With VM2000

'Higher' LED intensity

'Standard' LED intensity

	Charge [pC]	RMS [pC]	# Phe (estimate)	
Air	197	. 21		77
BGO	202	23		67
ZnWO4	188	24		57

	Charge	RMS	# Phe	
	[pC]	[pC]	(estimate)	
Air	127	19		41
BGO	133	19		44
ZnWO4	121	21		33

'Low' LED intensity

	Charge	RMS	# Phe	
	[pC]	[pC]	(estimate)	
Air	63	16		17
BGO	64	14		20
ZnWO4	63	16		16

ZnWO₄ production

2

Two methods to produce the grains:

- from large crystals obtained using the Czochralski method
- crystalisation from dissolved ZnWO4: "flux method" (much cheaper)

Better homogeneity in the grains light yield of the second production

Production under control:

- 1. grains are similar to larger crystals (crystalisation works !)
- 2. homogenous production

		Max Amp	Sigma	
	Crystals	[mV]	[mV]	
	1 grain 1st batch	257.1	36.1	PIMI
	1 grain 1st batch	307.7	34.9	
	1 grain 2nd batch	302.5	32.9	
-	1 grain 2nd batch	290.2	36.6	
				PMT
	Grains 1st batch	260.7	59.2	
≠→	Grains 2nd batch	292.7	43.1	
	0.85 mm plate	298.2	36.9	PMT
	1.03 mm plate	300.3	34.0	
L	2.14 mm plate	284.2	36.6	
	3.14 mm plate	266.9	35.1	
	4.25 mm plate	272.8	34.5	PMT
	1 cm ³ crystal	181.4	26.7	
2022				
_2023	2x2x4 cm ³ crystal	125.9	23.2	PIMI

ZnWO₄ single crystal grains obtained via the flux method

3rd batch: 1380 g Size ~ 1 mm October 2022

2nd batch: 170 g Size ~ 1÷2 mm May 2022

1st batch: 40 g Size ~ 1÷3 mm 2021

Na₂WO₄ as a solvent + ZnWO₄ salt:

ZnWO₄ grains yield \approx 85 wt %, colorless and transparent, average size of grains \approx 1 mm lateral size.

Na₂WO₄ as a solvent + ZnO and WO₃ : ZnWO₄ grains yield ≂ 25 wt % but brownish color

Sample name	Mean	Sigma
Grains in the frame 1 st	260.7	59.24
batch (40 g)		
Grains in the frame 2nd	279.9	43.11
batch (170 g)		
Grains in the frame 3 rd	293.5	44.93
batch (1380 g)		

Test bench for the ZnWO₄ characterization

