Shielding of FCC CLD fringe field: a few initial thoughts

M. Buzio, M. Pentella TE-MSC

Fringe field of CLD solenoid at booster beam line

Qualitative Biot-Savart model

O.

Mitigation of fringe field effects – an aide-memoire

- Increase size of source magnet iron yoke (very costly ! And probably it is already optimized....)
- Passive ferromagnetic shields: *see next slides*
 - massive shield between magnet and beam line
 - thin shell around beam line
- Passive superconducting shields (SuShi-style): complexity, cost ...
- Active shielding:
 - counter solenoids (like in MRI magnets): best results, costly, require full redesign
 - distributed compensation coils at beam line *see next slides*
- Classic correction with lumped magnetic elements

MNPA25-04 SPS corrector 200 mTm @ 600 A

Choice of ferromagnetic shielding material for B=35 mT, H=28 kA/m

Supermendur Co50Fe48Ni1 $\mu_r \approx 71$ (tape 180 USD/kg on Alibaba)

ARMCO pure iron $\mu_r \approx 57$ (sheet 4 CHF/kg in CERN stores)

HIGH PURITY IRON FOR MAGNETIC APPLICATIONS ARMCO[®] PURE IRON

AK Steel International markets specialty steel products such as ARMCO[®] pure iron, stainless steels, metal products and composite auxiliary materials for the aerospace, automotive and industrial sectors.

Thin, single-layer cylindrical ferromagnetic shield – transverse field attenuation

- 10 mm of Permendur \rightarrow attenuation factor \approx 15
- Multi-layer shields (external shells with higher permability) commonly used

Massive iron shield between CDS solenoid and booster beam line

- Example 2D calculation: yokeless solenoid B₀=1.16 T
- Unshielded fringe field along booster beam line (A-B) 26~37 mT
- 0.5 m thick solid ARMCO shield, μ_r =50
- Shielded field $13 \sim 20$ mT, mean attenuation factor ≈ 2.8

Some field distortion to be expected end regions (even with iron yoke)

Active shielding – compensation coils

Longitudinal component B_z = 20 mT

Solenoidal winding $\rightarrow \frac{N_t I}{L} = \frac{B_z}{\mu_0} \approx 16 \text{ A/mm}$

- (e.g. ~8 mm² of air-cooled Cu/longitudinal mm)
- Transverse component B_r=35 mT: If local shielding needed in each half beam pipe → I = π Ø B_r/μ₀ ≈ 4400 A (e.g. 440 mm² of water-cooled Cu on either side) (Possible alternatives: SC windings, permanent magnets)

Preliminary conclusions

Shielding a 35 mT stray field is not entirely trivial

- Passive shielding at source generally much more costly/impactful than shielding at target
- Passive shielding with ferromagnetic material around beam pipe: looks feasible, available clearance should be checked
- Passive shielding with bulk superconductor (SuShi style): absolutely best performance, at a cost ...
- Active local compensation also seems feasible
- Classic integral lumped correction: probably the simplest solution

Requirements and mechanical constraints to be detailed, for a reasonable choice to be made