
PostgresSchedDB overview
and status update

30 Mar 23

CTA developers meeting

David Smith

Introduction

• Quick note on Names: Scheduler, SchedulerDatabase, OStoreDB,
objectstore are C++ names (class or namespace) and also reflected in
subdirectory names in the CTA source tree

• This development concerns (mostly) the storage and retrieval of the data
on which the Scheduler works: data contain information about requests
and their status and let the Scheduler drive the request life cycle

• Requests: Archive, Retrieve and Repack.

• Lifecycles: Enqueue (typically at frontend), allow cta-taped to perodically
choose a tape to mount to fullfill a set of Archive or Retrieve (and thus
Repack) requests. Once a tape is mounted, must allow cta-taped to read or
write the appropreate files to tape.

Scheduler

SchedulerDatabase

OStoreDB
objectstore::

(cta/scheduler)

(cta/scheduler)

(cta/scheduler/OStoreDB)

(cta/objectstore)

uses

Scheduler

SchedulerDatabase

PostgresSchedDB

rdbms::

(cta/scheduler)

(cta/scheduler)

(cta/scheduler/PostgresSchedDB
cta/scheduler/PostgresSchedDB/sql

cta/scheduler/PostgresSchedDB/schema)

(cta/rdbms
cta/rdbms/wrapper)

uses

Objectstore (brief!): Archive
ArchiveRequest:
srcurl
MountPolicy
Filesize
jobs[]:

status
copynb
tapepool
failurelogs[]
…

…
is_repack
repackInfo:

repackRequestAddress
…
jobs_destination[]:

destination_vid
copy_nb

JobPointer:
Address
Size
Copynb
Priority
min_archive_request_age
Starttime
mount_policy_name
…

JobPointer:
Address
Size
Copynb
Priority
min_archive_request_age
Starttime
mount_policy_name
…

Tapepool1, queuetype1: archive queue

Tapepool2, qeuetype1: archive queue Queue
Summary

Queue
Summary… JobPointer: ...

…JobPointer: …

Map<pri,count> priority_map
Map<minage,count> min_request_age_map
Map<string,count> mountpolicyname_map
Archivejobs_bytes
Archivejobs_count
Oldest job creation time
Youngest job creation time

Postgres table: Archive_Job_Queue

srcurl filesize Status (1) Copynb=1 Tapepool
(1)

Min_archi
ve_req_ag
e

… Faillogs_P
B (1)

Is_repack destinion_VI
D (1)

srcurl filesize Status (2) Copynb=2 Tapepool
(2)

Min_archi
ve_req_ag
e

Faillogs_P
B (2)

Is_repack destinion_VI
D (2)

Flatten the request + job information into repeated rows, one row per job (except for “failure logs”). e.g. for a 2 job
archive request as this:

(39 columns in current schema)

Repeated request level information rather than having a separate request & job tables.
Flattern the repackInfo data into the row as well.

Have a column with ProtoBuf content: the failurelogs / reportfailurelogs which contain
failure information for retired jobs.

RetrieveRequest:
Scheduler_request

dstURL
…

MountPolicy:
name
min_retrieve_req_age
retrieve_priority …

activity
ArchiveFile:

archivefileId
TapeFile tf[]:

copyNb
vid
fseq
…

Active_copy_nb
RetrieveJob jobs[]:

copyNb
maxTotalRetries
TotalRetries
…
failurelogs[]
isFailed

isVerifyOnly
isFailed
isRepack
RetrieveReqRepackInfo:

…

Objectstore (brief!): Retrieve

JobPointer:
Address
Size
Copynb
fseq
Priority
min_retrieve_request_age
Starttime
mount_policy_name
Activity …

VID, queuetype: retrieve queue Queue
Summary… JobPointer: ...

Map<pri,count> priority_map
Map<minage,count> min_request_age_map
Map<string,count> mountpolicyname_map
Map<string,count> activity_map
Retrievejobs_bytes
Retrievejobs_count
Oldest job creation time
Youngest job creation time

Job queued once, although there may be multiple tape copies. Queue of
JobPointers kept in fSeq order.

Tape copies to be considered are provided by the Scheduler to
SchedulerDatabase; this may be a subset of those in the Catalogue.

The queue, and hence VID (tape) is determined within the
SchedulerDatabase (or lower) layer any time the job needs to be (re)-
queued; i.e. using the objectstore::Helpers methods.

Postgres table: Retrieve_Job_Queue

Decided to only queue one row for a Retrieve job, but need to have enough information to (re)-try at any VID.
Flattern as much as possible, with some columns reflecting the current “active” copy.

Status
(active_co
pynb)

Vid
(active_co
pynb)

Min_retri
eve_req_
age

Active_Co
pyNb

… RetrieveJ
ob_PB

RepackInf
o_PB

Combine TapeFiles and Jobs arrays into a single repeated protobuf, since there is always a TapeFile <-> Job relationship.

RepackIfno is used in the repack workflow, to buid an ArchiveRequest once the RetrieveRequest is done.

The RepackInfo contains repated elements, e.g. archive_routes and copy_nbs_to_rearchive that depend on number of
new Archives to be created. The RetrieveJob contains entries corresponging to the number of possible soruce tape copies;
so RetrieveJobs and RepackInfo were kept separate.

Postgres views: Archive_Job_Summary & Retrieve_Job_Summary

To provide the equivalent of the per Queue summary information a Query View is created. The query groups by
tapepool or VID, status, mountpolicy_name, returning count, and min/max(start_time), sum(bytes).

QueueTypes

Not imagined to specifically preserve concept of queuetype in the postgresDB; this is implied by state or state +
isRepack. Planned to add FAILED_ tables (x 3 for archive/retreieve/repack) for requests in terminal state.

RepackRequest:
Vid
Buffer_url
Status
Add_copies_mode
Move_move
Totoal_files_to_retrieve
…
Failed_to_archive_bytes
lastExpandedFseq
…
Is_expand_finished
Is_expand_started
Mount_policy
…
Subrequests[]
Destination_infos[]

Objectstore (brief!): Repack

JobPointer:
Address

Queuetype (pending/toexpand): repack queue

… JobPointer: ...

Postgres table: Repack_Job_Queue

Request already quite flat: Indicded two protobuf columns for subrequests[] and
destination_infos[].

Ownership

• Ownership
• Plan to maintain an ownership concept: one column for owner in

archive/retrieve/repack. PostgresDB peridically update an owner-table with a
heartbeat. => still a garbage collection collection;

• select for update from owner-table where “heartbeat too old”;
• Remove ownership/adjust matching archive/retrieve/repack reqs.
• Drop old owner row

• Would be nice to not have this but this is what I’m working towards..
• Considered keeping row locks while jobs active, but long lived db transactions likely

to be problematic

• Request IDs
• With objectstore, IDs (“addresses”) are computed before creation. Natural approach

for DB is to have a primary key for a table as a sequence, which thus is discovered
after insertion.

Status

• Much to do, but several steps done
• Schema more or less complete; but surely subject to some change

• All written code compiling, but not functional

• Request/job objects written, with insert of new requests and retreieve from
database and serialisation/deserialisation of the protobuf columns.

• Initial creation/queuing functions added (in the PostgresSchedDB class) .

• fetchMountInfo fetching possible Archives. (Missing retrieve at moment!)

• createMount for Retrieve & Archive present.

• Postgresscheddb::Helpers equivalent added to select best VID for Retrieve.

• Initial part of expansion for Repack (creation of RetrieveRequests) added.

Expected next steps (of development)

• Add (untested) code for obvious missing functions
• fetchMountInfo for Retrieve, and creation of archive requests for the repack

workflow (what is called the Transfation in the objectstore).

• Ensure appropreate use passing of connection pool vs transaction

• Adopt ID (vs address) style indxexing of the rows (it’s currently a bit mixed).

• Reporting (maybe success first)

• Then move to a stage of running small workflows with intense debugging of
the methods step by step.
• Also run tests (Much of SchedulerTest.cpp tests should eventually pass, have prepared a

“GenericSchedulerTest” which excludes a few of the current tests which directly do
actions on the objectstore).

