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1. SR properties

Synchrotron Radiation, V. Baglin,  CERN  13 June  2023



Vacuum, Surfaces & Coatings Group

Technology Department

• In a synchrotron, charged particles can radiate light by synchrotron radiation

• This effect can be used for diagnostics purposes 

CERN Control Centre LHC beams SR displays

• Particles lose energy by synchrotron radiation ➔ should be compensated by RF system

• Beam emittance shrinks upon emission of synchrotron radiation (damping rings/wigglers)
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Synchrotron radiation: visible light
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Electromagnetic Spectrum
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Synchrotron Radiation

• A charged particle which is accelerated generate radiation (magnetic bremsstrahlung)

• The power of the centripetal radiation is larger than the longitudinal radiation (factor    ) 

• For a relativistic particle, the radiation is highly peaked (opening angle ~ 1/   )

• The radiation energy range from infrared to gamma rays: from meV to MeV
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• Magnetic rigidity:
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Critical energy
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• The critical energy c splits the power spectrum in two equals parts: 50% above, 

50% below c

• 88 % of the emitted photons have an energy lower than the critical energy
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Dissipated power

• The average power emitted by the beam per unit of length is 

( )
I

2

E

cm3

e
  [W/m] P

2

4

42

00

0


=

• Electrons :

P0 [W/m] = 88.57
E[GeV]4

2𝜋 𝜌[m]2
I[mA]

• Protons:

P0 [W/m] = 7.79 10−12
E[GeV]4

2𝜋 𝜌[m]2
I[mA]
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• For the total dipole radiation power dissipated around the ring, multiply by 2

• Protons generate a lot less SR compared to electrons because there is a 1/m0
4

dependency in the formula for the radiated power, where m0 is the rest mass of 

the radiating particle. Protons are 1836 times heavier than electrons, so the 

reduction factor is ~8.8·10-14

88.57

7.79 × 10−12
= 1836 4

With 1836 equals the ratio of proton to electron mass
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• The photon flux per unit of length is given by :

• Electrons : • Protons:
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Linear photon flux

• LEP : 3 1016 ph/m/s • LHC : 1 1017 ph/m/s
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Scaling with energy
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1/g = vertical opening angle = 0.13 mrad ➔ 1.3 mm at 10 m
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Energy distribution in the vertical plane
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LHC SR Spectrum : from IR to UV
• With nominal parameters : 7 TeV and 585 mA

• 2010, 2011, 2012 and 2015 spectra

450 GeV

7 TeV
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LEP SR spectrum: harder spectrum, X-rays & gamma rays

• LEP: electron-positron collider; was installed in the (now) LHC tunnel before LHC; same circumference (26.8 km)

LEP (CERN):

(high-energy e+ e-

COLLIDER)

 = 2963 m

I = 4 mA

E = 100 GeV (up to 104)

c = 748.6 keV 

F = 1.736·1016 ph/s/m

P = 0.642 kW/m

1/g = 5.11 mrad→ 0.511 mm @100 m
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Soleil KEK-B LEP LHC

LER HER Inj. 1 2 Inj. Col.

Particle e- e+ e- e- e- e- p p

Beam current mA 500 2600 1100 3 3 7 584 584

Energy GeV 2.75 3.5 8 20 50 96 450 7000

Bending radius m 5.36 16.31 104.46 2962.96 2784.302

Power W/m 14 030 20 675 5 820 0.8 30 955 0 0.2

Critical energy eV 8 600 5 800 11 000 6 000 94 000 660 000 0 44

Photon flux photons/m/s 3 1019 7 1019 1 1019 3 1015 7 1015 3 1016 7 1015 1 1017

Dose at 3000 h photons/m 4 1026 8 1026 1 1026 3 1022 7 1022 3 1023 7 1022 1 1024

• In LEP, and all synchrotron light sources, the evacuation of the power is an issue

• The LHC operates at 7 TeV with ~ 0.6 A. Power evacuation is an issue for the cryogenic system (1 kW/arc), 

due to the low carnot efficiency at low temperature

• The critical energy varies from a few 10 eV to 660 keV. Strongly bound molecules can be desorbed  

15
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SR impact on different type of machines …
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LHC Design

(CERN LHC Vacuum group)

Courtesy N. Kos CERN TE/VSC

Courtesy N. Kos CERN TE/VSC
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… heavy consequences on design

• Perforated Cu colaminated beam screen to intercept the SR power (~ 1 kW/arc) 

protecting the 1.9 K cold bore and to allow a distributed pumping
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Long Straight Section Zoo

Arc

44x34.3

Q1

47.7x37.9

Q5 Q6

45.1x35.3

Q2  Q3 Q4

57.8x48.0

D2

62.6x52.8D1

67.4x57.6

• Focusing inner triplets located around experiments operate at 1.9 K

• Matching sections operate at 4.5 K ➔ beam screen with cryosorbers

Beam Screen for the LHC Long Straight Sections, edms 334961
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Ray tracing

•Ray tracing programs are used to compute photon flux and power dissipation in 

specific geometries e.g. SynRad+

Ray tracing of synchrotron radiation in a real machine 

courtesy R. Kersevan

https://molflow.docs.cern.ch/
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LHC FCC-ee FCC-hh

LHC HL-LHC Z WW ZH ttbar

Particle p p e- e+ p p

Beam current mA 584 1120 1390 147 29 5.4 500

Energy GeV 7 000 45.6 80 120 182.5 50 000

Bending radius m 2801 10760 2801

Power W/m 0.2 0.4 730 35.7

Power kW/beam 4 7 50 103 2.3 103

Critical energy keV 0.044 20 106 356 1253 4.3

Vertical angle µrad 134 11 6 4 3 19

SR size at 10 m mm 1.3 0.011 0.06 0.04 0.03 0.19

Incidence angle mrad 4 3.3 2

SR path length m 11.4 35.9 20.5

Photon flux photons/m/s 1 1017 2 1017 8 1017 1 1017 4 1016 1 1016 2 1017

Dose at 3000 h photons/m 1 1024 2 1024 8 1024 1 1024 5 1023 1 1023 2 1024

19
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SR parameters for next CERN machines
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2. Photon interactions
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Photon interaction with matter

http://physics.nist.gov/xcom

• Photons emitted by synchrotron radiation 

interact with the vacuum chamber material

• Penetration depth ~ 5 nm in metals

• LHC, Ec = 44.1 eV

• Sync rad machine, Ec = 5-10 keV

• Super KEKB HER, Ec = 7.3 keV

• FCCee Z, Ec = 0.6 keV

• FCCee W, Ec = 32.7 keV

➔ Photoelectrons dominated

• LEP2, Ec = 0.7 MeV

• FCCee H, Ec = 0.3 MeV

• FCCee tt, Ec = 1.3 MeV

➔ Compton dominated
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A. Molecular desorption
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O. Gröbner. Vacuum 43 (1992) 27-30 Y. Suetsugu et al., J. Vac.Sci.Technol. A37 021602 (2019)

SuperKEKB LER @ 1 A
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Photon Stimulated Desorption

• The observed dynamic pressure decreases by several orders of magnitude with 

photon dose: “photon conditioning” 

• The photon desorption yield is characterised by ηphoton

With beam P ~ 10-10 Torr
With beam P ~ 3 10-9 mbar

𝑃 = 𝑃𝑜 + 𝑃𝐷𝑦𝑛 =
𝑄 + 𝜂𝑃ℎ𝑜𝑡𝑜𝑛𝑠 ሶΓ𝑃ℎ𝑜𝑡𝑜𝑛𝑠

𝑆
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Photon Desorption Yield

• Initial yield ~ 10-3 – 10-2 molecules/photon

• Rapid decrease with dose until ~ 10-7 - 10-6 molecules/photon at 1025-1026 ph/m

• Several monolayers (1 to 15) of gas can be desorbed

• Photoelectric effect with linear yield till 5 keV, then Compton dominated above 100 keV

• Large yield for physisorbed/condensed gases

Unbaked stainless-steel

3.75 keV

C. Herbeaux et al. 

JVSTA 17(2) Mar/Apr 1999, 635 
O. Gröbner. CAS  99-15

FCC-ee
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V. Anashin et al., 

Vacuum 53 (1-2), 269, (1999)

Unbaked Stainless steel

250-300 eV

Perpendicular incidence
As a function of critical energy
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C. Photoelectrons
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Vacuum, Surfaces & Coatings Group

Technology Department

R. Cimino et al. , Phys. Rev. ST Accel. Beams 2, 063201 (1999) 

Gold

• Photoelectric effect : when a photons irradiates a surface with enough energy, it produces 

electrons

• The energy of emitted electrons varies from : 0 eV to (hν – Wf) eV

• Most of the electrons are secondary electrons (Ec < 20 eV) produced in the material

• A few 0.1 % to 1 % have higher energy

26
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Photoelectrons
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EDC under LHC SR irradiation
• EDC: Electron distribution curve 

• SR dose reduce the amount of low energy photoelectrons

• The total yield is decreased by 40 % after 1 day of nominal LHC operation 

-2 0 2 4 6 8 10 12 14

As received surface;                  PY=0.103
(dose<1 min. LHC operation)

After ~ 1 day  LHC operation;   PY=0.063 

OFE Colaminated Copper

Electron energy above the vacuum level (eV)

In
te

n
s
it
y
 (

a
.u

.)

R. Cimino et al. Phys. Rev. AB-ST 2 063201 (1999)
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Photoelectrons for a LHC type beam screen
• Sawtooth structure 

• At 194 eV critical energy (“11.5 TeV LHC”)

• The Photoyield decrease with beam conditioning

• From 4 to 1 % under perpendicular incidence

V. Baglin et al., Chamonix, 2001

Sawteeth, Ec=194 eV

Synchrotron Radiation, V. Baglin,  CERN  13 June  2023

Courtesy N. Kos CERN TE/VSC
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B. Reflectivity
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V. Baglin et al., Trieste, 1998

• From 1 to 80% forward reflectivity

• Low reflectivity at perpendicular incidence

• High reflectivity at grazing incidence i.e. 

this is the case of SR in accelerators

• In LHC, 5 mrad gives more than 95% 

reflection

• Copper adsorption at 920 eV

Henke databook

DCI, Ec=3 keV

O. Gröbner et al., 24-4-1988
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Photon reflectivity

➔ In complex 

geometries, ray 

tracing is done 

with e.g. SynRad
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Flat Cu Saw tooth

N. Mahne et al. App. Surf. Sci. 235, 221-226, (2004)
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Photon reflectivity of LHC type material
• The saw tooth structure reduces the forward reflectivity but increases diffused reflectivity
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• Dedicated instrument for 3D mapping of photon interaction with matter at BESSY-II synchrotron
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Refined reflectivity measurements

E. La Francesca et al. Phys. Rev. Accel. Beams 23, 083101 (2020)

• LHC:

• Roughness ~ 15 nm, 

• Incidence angle 4 mrad (=0.25˚)

• FCC hh or ee: 

• Incidence angle 2 mrad

• Forward reflectivity: 0.2-0.9 in a wide photon 

range

• Surface roughness is a key factor
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D. Photoionisation
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Photoionisation of residual gas

• Ionisation threshold ~ 15 eV

• cross section ~ 10-21 m2

•Range 15-30 eV

• Photon flux in the range ~ 1016 ph/m/s

• Path length ~ 10 m

• ሶΓ𝐿 ~ 1017 ph/s

• Gas density: 1015 H2/m
3 (4 10-8 mbar) 

Synchrotron Radiation, V. Baglin,  CERN  13 June  2023

Γ
•

ion, ph= 𝜎𝑖𝑜𝑛,𝑝ℎ ሶΓ𝐿n ≅ 2 1011 ions/m/s

• Remark: Ionisation of the residual gas by the 7 TeV proton beam

• cross section ~ 10-22 m2

• for LHC: I = 0.6 A; I/e ~ 4 1018 proton/s; so:

Γ
•

ion, proton= 𝜎𝑖𝑜𝑛,𝑝𝑟𝑜𝑡𝑜𝑛
𝐼

𝑒
n

Γ
•

ion, ph

Γ
•

ion, proton

=
𝜎𝑖𝑜𝑛,𝑝ℎ

𝜎𝑖𝑜𝑛,𝑝𝑟𝑜𝑡𝑜𝑛

ሶΓ𝐿

ൗ𝐼 𝑒
≅

1

4

Y. Miyahara. Jap. J of Appl. Phys. 26 (1987) 1544-1546
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Conclusion

• Synchrotron radiation is emitted in the magnetic field in a highly peaked vertical angle;

• SR is characterised by the critical energy, power and photon flux

• The photon energy spans from IR to UV (in LHC) and X-rays, gamma rays for FCCs 

• Photon flux and power have significant impact on the machine design

• Photons irradiating a surface:

• emit photoelectrons

• stimulate molecular desorption

• may be reflected

• Photons ionise the residual gas along their path
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Thank you for your attention !!!
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Back up slides
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The CERN Large Hadron Collider (LHC)

• 26.7 km circumference

• 8 arcs of 2.8 km

• 8 long straight sections of 575 m

• 4 experiments

• 7 TeV / beam

• 90% of the machine is held at 

cryogenic temperature: 1.9-20K

ATLAS

CMS
ALICE

LHCb

Synchrotron Radiation, V. Baglin,  CERN  13 June  2023
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• Circumference 26.7 km

• Beam energy at collision 7 TeV

• Beam energy at injection 0.45 TeV

• Dipole field at 7 TeV 8.33 T

• Luminosity 1 x 1034 cm-2.s-1

• Beam current 0.584 A

• Protons per bunch 1.15 x 1011

• Number of bunches 2808

• Nominal bunch spacing 24.95 ns

• Normalized emittance 3.75 mm. rad

• Total crossing angle 285 mrad

• Energy loss per turn 6.7 keV

• Critical synchrotron energy 44.1 eV

• Radiated power per beam 3.6 kW

• Stored energy per beam 362 MJ

• Stored energy in magnets 11 GJ

• Operating temperature 1.9 K

LHC Nominal Design Parameters

EVC-14, Portoroz, Slovenia ,6-10 June 2016
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LHC Dipole Vacuum System
• Cold bore (CB) at 1.9 K which ensures leak tightness

• Beam screen (BS) at 5-20 K which intercepts thermal loads (~ 1.4 kW/arc for SR + Resistive wall)

Courtesy N. Kos CERN AT/VAC

Synchrotron Radiation, V. Baglin,  CERN  13 June  2023
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LHC Beam Screens Functionalities

• Intercept the heat load induced by the 

circulating beam (impedance, synchrotron 

radiation, electron cloud) 

• Operate between 5 and 20 K (high RRR)

• Pumping holes to control the gas density

Courtesy N. Kos CERN TE/VSC

• An innovative and complex system, produced at several 10 km scale !

Functional design map of beam screen

P. Lebrun et al.

CERN ATS 2013-006

Synchrotron Radiation, V. Baglin,  CERN  13 June  2023
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LHC Vacuum System Principle

• Molecular desorption stimulated by photon, electron and ion  bombardment

• Desorbed molecules are pumped on the beam vacuum chamber

• 100 h beam life time (nuclear scattering) equivalent to ~ 1015 H2/m
3 (10-8 Torr H2 at 300 K)

In cryogenic elements 

• Molecular physisorption onto cryogenic surfaces 

(weak binding energy)

• Molecules with a low recycling yield 

are first physisorbed onto the beam screen

(CH4, H2O, CO, CO2) and then onto the 

cold bore

• H2 is physisorbed onto the cold bore

Dipole cold bore at 1.9 K

Dia. 50/53 mm

Beam screen

5 - 20 K

Dia. 46.4/48.5 mm

Cooling tubes

Dia. 3.7/4.8 mm

Photons

Hole

pumping

Wall

pumping

Desorbed 

molecules

Electrons 

stripes
3
6

.8
 m

m
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