

Dust charging and dust-surface interaction in the laboratory

Cécile Arnas

Laboratory of Physics of Ions-Molecules Interaction (PIIM)

CNRS, Aix-Marseille university, 13013 Marseille, France

Workshop on Dust Charging and Beam-Dust Interaction in Particle Accelerators, CERN (13-15 June 2023)

Discharge chambers for dustnanoparticle production

Base vacuum: from 10⁻⁵ Pa to 10⁻⁴ Pa

Plasmas (gas): 10 - 100 Pa

Discharges between electrodes in reactive gases

98% Ar plasmas mixed with 2% methane

carbonaceous nanoparticles $\simeq 200 \text{ nm}$

Ar plasma with sputtered atoms

W nanoparticles $\simeq 25 \text{ nm}$

Aix*Marseille Université

Nanoparticles produced from cathode sputtering in DC discharges

- □ Size evolution, density, internal structure (indication on growth mechanisms)
- □ Modification of the discharge parameters during negative charging
- □ Modeling of charging mechanisms
- □ Transport inside the plasma

Standard model of formation

Aix*Marseille

Nanoparticle growth in sputtering DC discharges

Size increase vs plasma duration

Aix*Marseille

Growth by agglomeration and deposition

TEM-HR image

Tungsten nanoparticle ~ 28 nm

Carbon nanoparticle ~ 25 nm Nuclei of ~ 3 nm Carbon sticking around

Aix*Marseille

Nanoparticle density

Beer-Lambert law: $I/I_0 = \exp(-\pi a^2 C_{ext} n_d L)$

Extinction coefficient: $C_{ext} = C_{abs} + C_{scat}$ and $x = 2\Box a/\lambda_0 < 0.3$

$$C_{abs} = 4x Im \overset{a}{c} \frac{m^2 - 1}{m^2 + 2} \overset{\ddot{o}}{g}, \quad C_{scat} = \frac{8}{3} x^4 \left| \frac{m^2 - 1}{m^2 + 2} \right|^2$$

m = complex refractive index of carbon nanoparticlem = 1.3 + i 0.08

Carbon nanoparticles:

Aix+Mars

Charging of **carbon nanoparticles** to the detriment of discharge/plasma

Three discharges parameters : $P_{Ar} = 60 Pa$, $I_d = 70 mA$,

V_d: <u>self-regulated parameter</u> (control the ionization)

<u>No sputtering</u>: P_{Ar} , I_d , V_d are cte <u>With sputtering and NPs production</u>:

- Compensation of the electron loss by the increase of V_d
- decrease of V_d due to the loss of a part of NPs on the anode
- Increase again due to the appearance of a new NP generation

Charge of an isolated spherical dust particle

Maxwellian e⁻ and ions: $T_e < 5 \text{ eV}$ and $T_e >> T_i \sim T_g$

Dust charge (vacuum approximation): $Q = C\varphi \approx 4\pi\varepsilon_0 a\varphi$ = Ze

Looking for φ , the floating potential : $J_i(\varphi) - J_e(\varphi) = 0$

higher mobility of e^- : $\varphi < 0$

Orbital Motion Limited model (OML):

$$b_{coll} = a^{2}(1 - \frac{e\varphi}{k_{B}T_{i}})$$
 Ion current : $I_{i} = \frac{1}{4}\pi a^{2}en_{0}v_{i}(1 - \frac{e\varphi}{k_{B}T_{i}})$

$$exp(\frac{e\varphi}{k_{B}T_{e}}) = \left(\frac{T_{i}m_{e}}{T_{e}m_{i}}\right)^{\frac{1}{2}}(1 - \frac{e\varphi}{k_{B}T_{i}})$$

From Boltzman law:

Electron current :
$$I_e = -\frac{1}{4}\pi a^2 e n_0 v_e \exp(\frac{e\varphi}{k_B T_e})$$

Charge during the agglomeration phase

For
$$T_e = 2 \text{ eV}$$
, $T_i = 0.04 \text{ eV}$
OML --> $\varphi = -4.3 \text{ eV}$

 $a \sim 2-3 \text{ nm: } \mathbb{Z} \sim 6e^{-} - 9e^{-}$

- OML cannot explain agglomeration (Coulomb repulsion)
- Consider charge fluctuations --> nuclei can be briefly neutrals, positively charged

Charge distribution (T. Matsoukas *et al*, J. Appl. Phys., 1995)

• n_q : fraction of nanoparticles carrying the charge q

 $\frac{\partial n_q}{\partial t} = I_i(q-1)n_{q-1} + I_e(q+1)n_{q+1} - [I_e(q) + I_i(q)]n_q$

Transformed to a partial differentiel equation:

$$\frac{\partial n}{\partial t} = -\frac{\partial (I_i - I_e)n}{\partial q} + \frac{1}{2} \frac{\partial^2 (I_i + I_e)n}{\partial q^2}$$

Charge during the agglomeration phase

Gaussian charge distribution:
$$n(q) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(q-\bar{q})^2}{2\sigma^2}\right)$$

Average charge:
$$\overline{q} = k \frac{4\pi\varepsilon_0 a T_e}{e^2} \ln\left[\frac{n_i}{n_e} \left(\frac{m_e T_e}{m_i T_i}\right)^{1/2}\right]$$

- $\overline{q} \sim 7e$ when $n_i / n_e = 1$
- $\overline{q} \sim 2e$ when $n_i / n_e = 10$

Explains the nanoparticle growth by agglomeration
of nuclei at the condition of n_e depletion
→ charging to the detriment of plasma electrons

3 coupled numerical modules*: argon DC discharge – molecular ions formation – NP evolution

1D sectional model: size distribution divided into bins or sections along the plasma

In each section: sizes 1-100 nm

- 100 continuity eq for the total volume density
- $+\ 100\ eq$ for the average chargeTapez une équation ici.

- Nucleation
- Transport
- Growth by sticking
- Growth by agglomeration

NP volume balance in each section

$$\frac{\partial V_l}{\partial t} = \frac{\partial V_l}{\partial t_{aggl}} + \frac{\partial V_l}{\partial t_{stick}} + S_{nuc} - \nabla F_l$$

Averaged NP charge of each section:

$$\frac{\partial q_l}{\partial t} = -\frac{\vec{\nabla}(q_l \overline{F_l})}{V_l} + (I_{e-slow} + I_{e-fast} + I_i)S_l + S^q_{nuc} + S^q_{aggl} + S^q_{sticking}$$

<u>Gaussian charge distribution</u>: smallest NPs can be neutral or > 0

Size evolution during the charging mechanism

At x ~ 2 cm from the cathode (position of electric field reversal)

Agglomeration can only occur between nuclei (neutral, positively charged) and big nanoparticles (negatively charged)

Red curve:

 n_e calculated <u>self-consistenly</u> through the coupling of the 3 numerical modules: coupling of negative molecular ions, negatively charged nanoparticles and n_e

Nanoparticles produced from cathode sputtering in DC discharges

□ Size evolution, internal structure (indications on formation), density

□ Modification of the discharge parameters at large density

□ Modeling of charging mechanisms (agglomeration)

 \implies \square Transport inside the plasma

Applied forces on an isolated spherical nanoparticle

- *Electric force* : $F_e = \text{ZeE}$ (E = ∇V_p where Vp: plasma potential)
- Ion drag force : $F_i = 2/3\pi a^2 n_0 m_{ar} v_i u_i (1 \frac{\rho_0}{2a} + \frac{\rho_0^2}{4a^2} \Lambda)$

$$\rho_0 = \frac{Ze^2}{m_i v_{th}^2}$$
: Coulomb radius

$$\Lambda$$
 : Coulomb logarithm

- Thermophoretic force : $F_{th} = -\frac{32}{15} \frac{a^2}{v_{th}} k_{th} \nabla T_{ar}$
- *Gravity*: $F_G = 4/3\pi a^3 \rho g$ (negligible)

Sputtering DC magnetron discharges

Aix+Marseille Université

- Tungstène cathode (sputtering)
- $P_{ar} = 30 \text{ Pa}, I_d = 0.3 \text{ A} (V_d \sim 200 \text{ V})$

CRUTCS

W nanoparticles produced in magnetron discharges

- Tungstène cathode (sputtering)
- $P_{ar} = 30 \text{ Pa}, I_d = 0.3 \text{ A} (V_d \sim 200 \text{ V})$

(10 successive plasmas of 200s)

NP substrate

2D plasma parameters measurements

n_e, T_e, V_P : Langmuir probe measurements T_{ar}: measurement byLIF

- n_e : maximum inside magnetic arches
- T_e : inverse variation of n_e
- V_P : increase inside magnetic arches max after the last magnetic arch
- T_{ar}: Ar heating due to collisions
 with sputtered atoms of <E> ~ 12 eV

OML model; a = 5 nm

Force balance

Aix*Marseille

Force balance

Aix*Marseille

Aix*Marseille Université

Nanoparticles produced from cathode sputtering in DC discharges

- □ Size evolution, density, internal structure (growth by agglomeration, sticking)
- □ Modification of the discharge parameters due to their negative charge
- □ Various modeling of charging mechanisms (+ fluctuations) and growth
- □ Applied forces for their transport in the plasma

Additional slides

NP density reaches ~ 10⁸ cm⁻³ also found experimentally

<u>Cylindrical Langmuir probe</u>

 $\label{eq:r_LP} $$ r_{larmor}$ for $z > 2$ cm and probe $$ $$ B$ (also) v_{de}/v_{the} ≤ 0.32 $$$

Classical analyses of probe characteristics

<u>Laser Induced Fluorescence (tunable laser diode)</u>

 $v = c(v_l - v_0)/v_l$; v_0 :transition frequency of an atom at rest, v_l : the laser frequency

Doppler shift:
$$k_b T = \frac{\lambda_0^2 M}{8 \ln 2} \Delta v^2$$

Laser scattering on the dust cloud during the transport of W nanoparticles towards the anode (classical DC discharges)

- V ~ 0.004 cm/s = 14.5 cm/h- 2^{nd} generation appears in the space freed by the 1^{st} generation

□ Analogue of dust particles of ISM, planet satellites

- □ New materials, technologies: superior properties to those of bulk materials
 - High surface area to volume ratio
 - Photo-emission wavelength decrease with the size decreases size
 - Lower melting temperature
 - Stronger materials

Applications:

- Optics: thinner displays, photophores, UV filters
- Electronics: nanodevice, single electron emission quantum dots
- Energy: hydrogen storage, improvement of solar cell efficiency
- Chemical: molecular sensor; catalyst
- Medicine: drug carriers, in-vitro imaging, cancer treatment