Modelling Dust Interactions Using a Fully Kinetic Numerical Framework

This work was supported in part by NASA's Early Stage Innovation (ESI) Appendix of SpaceTech-REDDI, Grant No. 80NSSC21K0226, and the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center.

Jan Deca Laboratory for Atmospheric & Space Physics **University of Colorado Boulder** In collaboration with M. Horányi, H.-W. Hsu, and X. Wang.

Laboratory for Atmospheric and Space Physics University of Colorado **Boulder**

Dust Transport.

- properties of the lunar regolith.
- Dust is also mobilised by human activities, representing both a technical and a health hazard.

[Dust particles in the LRV trails; Hsu & Horányi 2012]

Dust transport - driven by impacts, exposure to solar wind plasma and ultraviolet radiation - shapes the

[Lunar Horizon Glow; Criswell 1973]

Grain Charging on a Surface.

Conventional view

University of Colorado Boulder

Patched Charge Model [Wang et al. 2016; Schwan et al., 2017]

Lofting Criterium: $Q_d E = F_e + F_c > F_g + F_{co}$

Modeling Dust Dynamics.

 \bullet of magnitude in length and time scales.

Test-particle models.

(Major drawback: no feedback mechanism is implemented between the particle-generated and the external electromagnetic fields.)

Particle-in-cell models.

(Major drawback: needed computational resources skyrocket quickly due to the need to resolve Debye scales.)

Test-particle approach

From a numerical/modelling point of view, the current capabilities to study the dynamics of grain-scale charging processes and their interactions are limited due to the need to self-consistently merge several orders

Modeling Dust Dynamics.

From a numerical/modelling point of view, the current capabilities to study the dynamics of grain-scale charging processes and their interactions are limited due to the need to self-consistently merge several orders of magnitude in length and time scales.

Test-particle models.

electromagnetic fields.)

Particle-in-cell models. \bullet

scales.)

No framework currently exists that provide a clear path from the grain-scale mechanism responsible for lofting/ removing a dust particle from a regolith surface to an operational environment to develop and test the effectiveness of dust mitigation techniques.

- (Major drawback: no feedback mechanism is implemented between the particle-generated and the external
- (Major drawback: needed computational resources skyrocket quickly due to the need to resolve Debye

Theory and Simulation.

• Objective

Develop a framework of numerical models that couple the microphysics of grain-scaled processes with the selfconsistent solution of the near-surface plasma environment.

• Impact/Innovation

The proposed framework will be used to merge the qualitative understanding of the microscopic processes to the macroscopic behaviour of the lunar regolith, providing a much-needed tool to advance the effectiveness of dust mitigation techniques.

• Approach

We equip a basic particle-particle and a particle-in-cell code with a comprehensive multi-physics model and the necessary code-coupling mechanisms.

Modelling Approach.

Modelling Approach.

- Task 1 (TPG2D \rightarrow TPG3D):
 - a. Expand the numerical model from 2D to 3D and parallelise the code.
 - b. Develop a force-balance model, including cohesion, adhesion, and microgravity effects.
 - c. Develop the option to include non-spherical, irregular-shaped dust particles.
- Task 2 (PinC):
 - a. Expand the model to include multiple and composite objects/surfaces.
 - b. Develop the option for prescribed electromagnetic fields and secondary particle effects.
 - c. Develop a dust-kinetic model to evaluate dust transport phenomena.
- Task 3 (Code coupling):
 - a. Provide a mapping structure that merges the TPG3D components into a surface.
 - b. Develop the code structure in PinC to load TPG3D regolith mapping structures.
 - c. Build a library of realistic regolith surfaces.

TPG3D.

- Parallelisation.
 - OpenMP approach (shared memory).
 - No major redesign needed.
 - Limits the code to run within one computing node.
 - MPI approach (distributed memory). lacksquare
 - Major redesign needed.
 - No limit on the amount of computing power that can be used. (apart from overhead considerations).
- operation). Parallelisation is therefore not efficient at the root level.

University of Colorado Boulder

Major hurdle: TPG's computational cycle implements the Barnes-Hut tree algorithm (i.e., a reduction

- Approximation algorithm designed for n-body simulations. \bullet
 - No fixed grid, so not bound by CFL constraints. ullet

- Approximation algorithm designed for n-body simulations.
 - No fixed grid, so not bound by CFL constraints. \bullet
 - Divisions are constructed depending on particle/surface segment density.

- Approximation algorithm designed for n-body simulations. \bullet
 - No fixed grid, so not bound by CFL constraints. \bullet
 - Divisions are constructed depending on particle/surface segment density. \bullet

- Approximation algorithm designed for n-body simulations. \bullet
 - Divisions are constructed depending on particle/surface segment density.
 - Short range interactions, use brute force, i.e., Coulomb's Law. \bullet

- Approximation algorithm designed for n-body simulations. \bullet
 - Divisions are constructed depending on particle/surface segment density.
 - Long-range interactions, use multipole expansion. \bullet

Key Points:

- Correct electric field values computed.
- Smooth transition between the 'brute force' and multipole part of the solver.

Parallelisation.

Paradigm:

- decomposition (temporary solution).
- Every MPI thread/CPU corresponds to at least one leaf of the Barnes-Hut tree.

Key Point: \bullet

Plasma particles are distributed, grain information is 'global.'

Every MPI thread/CPU is responsible for a specific part of the computational domain, i.e., domain

Parallelisation.

- In practice:
 - After a few computational cycles, you always end up in the or scenario.
 - ► This approach allows for the MPI and particle reduction operation to run in unison.

2D example, assume 16 CPUs.

- 1 leaf, all CPUs perform the same work.
- 4 leaves, 2 CPUs perform the same work.
- 16 leaves, no CPUs perform the same work.
- 64 leaves, CPUs handle more than 1 leaf.

Particle Shapes

- **Design decisions:**
 - Keep grain information 'global' to reduce complexity.
 - Standalone input file for irregular volumes.
 - Mesh refinement to obtain preferred resolution.

Refine = 0

University of Colorado Boulder

Illustration of the mesh refinement for spherical and irregularly shaped dust grains.

Refine = 5

Particle Shapes

- Design decisions:
 - Mesh refinement to obtain preferred resolution.
 - Raytracing to obtain grain illumination/shadowing.

Laboratory for Atmospheric and Sp University of Colorado **Boulder**

Illumination factor 0.0 0.2 0.4 0.6 0.8 1.0

Particle mobilisation.

Particle mobilisation.

17

University of Colorado Boulder

Detachment criterion (artificial):

Adjacent grains each carrying 10³ elementary charges of the same polarity.

Grain charging setup:

- dQ/dt follows a Gaussian:
- mean = 0e-, sigma 50e-

dQ/dt follows a Gaussian: mean = 100e-, sigma = 50e-

Detached from surface.

- PinC: C++/MPI-parallelised particle-in-cell code.
 - Before: Can handle 1 object/surface.
 - Today: Can handle multiple/composite objects/surfaces by leveraging the Capacitance Matrix method.
- Basic Particle-in-Cell algorithm:

$$\nabla \cdot \boldsymbol{E} = 4\pi \rho$$

$$\nabla \cdot \boldsymbol{B} = 0,$$

$$abla imes oldsymbol{E} = -rac{1}{c}rac{\partial D}{\partial t}$$

$$\nabla \times \boldsymbol{B} = \frac{4\pi}{c}\boldsymbol{J} + \frac{1}{c}\boldsymbol{J}$$

$$rac{dx_p}{dt} = v_p$$

$$\frac{dv_p}{dt} = \frac{q_s}{m_s} \left(E_p + \frac{q_s}{m_s} \right)^2$$

University of Colorado Boulder

٠,

- PinC: C++/MPI-parallelised particle-in-cell code.
 - Before: Can handle 1 object/surface. lacksquare
 - Today: Can handle multiple/composite objects/surfaces by leveraging the Capacitance Matrix method.
 - Capacitance Matrix method (Miyake et al. [2009,2011]).

Relation between density and j
(N_G: # grid nodes; N_B: # body

$$\rho_i = \sum_{j=1}^{N_G} A_{ij} \phi_j, \quad (i = 1, \cdot \cdot \cdot)$$

$$\delta \rho_{s,i} = \sum_{j=1}^{N_B} C_{ij} \delta \phi_{s,j}, \quad (i = 1, \cdot \cdot)$$

$$\phi_c = \frac{\sum_{j=1}^{N_B} \sum_{j=1}^{N_B} C_{ij} \phi_{s,j}}{\sum_{i} \sum_{j} C_{ij} \phi_{s,j}}$$

University of Colorado Boulder

d potential y nodes)

 \cdots, N_G),

 $1, \cdots, N_B$).

 $\Delta Q_{\mathrm{s1}} = \sum_{i \in G_{\mathrm{s1}}} \sum_{i} c_{ij} (\phi_j - \phi'_j)$ $= \phi_{ ext{s1}} \sum_{i \in G_{ ext{s1}}} \sum_{j \in G_{ ext{s1}}} c_{ij} + \phi_{ ext{st1}} \sum_{i \in G_{ ext{s1}}} \sum_{j \in G_{ ext{st1}}} c_{ij}$ $+ \phi_{ extsf{g1}} \sum_{i \in G_{ extsf{s1}}} \sum_{j \in G_{ extsf{g1}}} c_{ij} + \phi_{ extsf{sc}} \sum_{i \in G_{ extsf{s1}}} \sum_{j \in G_{ extsf{sc}}} c_{ij}$ $+ \phi_{ extsf{g2}} \sum_{i \in G_{ extsf{s1}}} \sum_{j \in G_{ extsf{g2}}} c_{ij} + \phi_{ extsf{st2}} \sum_{i \in G_{ extsf{s1}}} \sum_{j \in G_{ extsf{st2}}} c_{ij}$ $+ \phi_{ ext{s2}} \sum_{i \in G_{ ext{s1}}} \sum_{j \in G_{ ext{s2}}} c_{ij} - \sum_{i \in G_{ ext{s1}}} \sum_{j} c_{ij} \phi'_j \, .$ $= \phi_{s1} \sum_{i \in G_{s1}} \sum_{j \in G_{s1+st1}} c_{ij} + V_{st1-s1} \sum_{i \in G_{s1}} \sum_{j \in G_{st1}} c_{ij}$ $+ V_{g1-sc} \sum_{i \in G_{s1}} \sum_{j \in G_{g1}} c_{ij} + \phi_{sc} \sum_{i \in G_{s1}} \sum_{j \in G_{g1+sc+g2}} c_{ij}$ $+ V_{
m g2-sc} \sum \sum c_{ij} + V_{
m st2-s2} \sum \sum c_{ij}$ $i \in G_{s1}$ $j \in G_{st2}$ $+ \phi_{s2} \sum_{i \in G_{s1}} \sum_{j \in G_{st2+s2}} c_{ij} - \sum_{i \in G_{s1}} \sum_{j} c_{ij} \phi'_{j},$

- PinC: C++/MPI-parallelised particle-in-cell code. \bullet
 - Before: Can handle 1 object/surface.
 - Today: Can handle multiple/composite objects/surfaces by leveraging the \bullet Capacitance Matrix method.
 - Example: two spheres in a stationary plasma.

- PinC: C++/MPI-parallelised particle-in-cell code.
 - Multiple objects by leveraging the Capacitance Matrix method.
 - Example: two differently-sized prisms in flowing plasma.

- Code-coupling (Tasks 3a-b). \bullet
- Dust transport model (Task 2c). \bullet
- Validate the framework against lab and flight \bullet results.

Thank you for your attention!

Questions?

THE ALLASS OF A CONTRACTION FOR THE ACTION AS TO CAR A CONTRACT OF A

University of Colorado Boulder

in a later on the stand provident and the second states a