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Dust Transport. & NLASP

e Dust transport - driven by impacts, exposure to solar wind plasma and ultraviolet radiation - shapes the
properties of the lunar regolith.

e Dust is also mobilised by human activities, representing both a technical and a health hazard.
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Moaeling Dust Dynamics. Y MLASP

From a numerical/modelling point of view, the current capabilities to study the dynamics of grain-scale
charging processes and their interactions are limited due to the need to self-consistently merge several orders
of magnitude in length and time scales.

e Test-particle models.

(Major drawback: no feedback mechanism is implemented between the particle-generated and the external
electromagnetic fields.)

e Particle-in-cell models.

(Major drawback: needed computational resources skyrocket quickly due to the need to resolve Debye
scales.)

Particle mover
Integrate Eqs. Of motion

Particle mover
Integrate Eqs. Of motion

Interpolation of Interpolation of

Interpalzuon of Interpc'2%on of

Fields *o Farticles Partic/zs \ Grid Fields to Particles Particles to Grid

Field solver
Integrate Maxwell's Egs.

Prescribed |
fields =3s.

Test-particle approach Particle-in-cell approach
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Moaeling Dust Dynamics. Y MLASP

* From a numerical/modelling point of view, the current capabilities to study the dynamics of grain-scale
charging processes and their interactions are limited due to the need to self-consistently merge several orders
of magnitude in length and time scales.

e Test-particle models.

(Major drawback: no feedback mechanism is implemented between the particle-generated and the external
electromagnetic fields.)

e Particle-in-cell models.

(Major drawback: needed computational resources skyrocket quickly due to the need to resolve Debye
scales.)

® No framework currently exists that provide a clear path from the grain-scale mechanism responsible for lofting/
removing a dust particle from a regolith surface to an operational environment to develop and test the
effectiveness of dust mitigation techniques.
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Theory and Simulation. @ NLASP

e Objective

Develop a framework of numerical models that couple the microphysics of grain-scaled processes with the self-
consistent solution of the near-surface plasma environment.

e |mpact/Innovation

The proposed framework will be used to merge the qualitative understanding of the microscopic processes to
the macroscopic behaviour of the lunar regolith, providing a much-needed tool to advance the effectiveness of

dust mitigation techniques.

e Approach

We equip a basic particle-particle and a particle-in-cell code with a comprehensive multi-physics model and the
necessary code-coupling mechanisms.
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Modelling Approach. @ NLASP
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Modelling Approach. )
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Task la

Task 1 (TPG2D—TPG3D): M&J TEZEEP ot —
a. Expand the numerical model from 2D to 3D and parallelise the code. T
b. Develop a force-balance model, including cohesion, adhesion, and Qg,‘ﬁl@ <Z:f,'k

microgravity effects. ! | —
Library of surfaces Task 3a Regolith surface map

c. Develop the option to include non-spherical, irregular-shaped dust

. =
particles. T

PinC
3D - parallel
Task 3¢

TaSk 2 (PII’]C) \ Taskz‘cggit tra'msport
a. Expand the model to include multiple and composite objects/surfaces. Jl/

Task 2a|Multiple/composite surfaces

b. Develop the option for prescribed electromagnetic fields and secondary particle effects.

c. Develop a dust-kinetic model to evaluate dust transport phenomena.

Task 3 (Code coupling):
a. Provide a mapping structure that merges the TPG3D components into a surface.
b. Develop the code structure in PinC to load TPG3D regolith mapping structures.

c. Build a library of realistic regolith surfaces.
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Task la

e Parallelisation. | ® E | TPG2D g
e OpenMP approach (shared memory). serial

» No major redesign needed.

TPG3D cpu i

parallel
CPU J
CPU k

» Limits the code to run within one computing node.

e MPI approach (distributed memory).

» Major redesign needed.
» No limit on the amount of computing power that can be used.

(apart from overhead considerations).

e Major hurdle: TPG’s computational cycle implements the Barnes-Hut tree algorithm (i.e., a reduction
operation). Parallelisation is therefore not efficient at the root level.
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Barnes-Hut tree algorithm. Y NLASP

e Approximation algorithm designed for n-body simulations.

* No fixed grid, so not bound by CFL constraints.
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Barnes-Hut tree algorithm. Y NLASP

e Approximation algorithm designed for n-body simulations.

* No fixed grid, so not bound by CFL constraints.

 Divisions are constructed depending on particle/surface segment density.
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Barnes-Hut tree algorithm. Y NLASP
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e Approximation algorithm designed for n-body simulations.
* No fixed grid, so not bound by CFL constraints.

 Divisions are constructed depending on particle/surface segment density.




Barnes-Hut tree algorithm. Y NLASP
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e Approximation algorithm designed for n-body simulations.
 Divisions are constructed depending on particle/surface segment density.

e Short range interactions, use brute force, i.e., Coulomb’s Law.
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Barnes-Hut tree algorithm.

Approximation algorithm designed for n-body simulations.

 Divisions are constructed depending on particle/surface segment density.

e |ong-range interactions, use multipole expansion.
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Barnes-Hut tree algorithm.

Key Points:

» Correct electric field values computed.
» Smooth transition between the ‘brute force’ and multipole part of the solver.
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Parallelisation.

Paradigm:

» Every MPI thread/CPU is responsible for a specific part of the computational domain, i.e., domain
decomposition (temporary solution).

» Every MPI thread/CPU corresponds to at least one leaf of the Barnes-Hut tree.

Key Point:

» Plasma particles are distributed, grain information is ‘global.’

)
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Parallelisation. Y MLASP
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2D example, assume 16 CPUs.

®
®

* ° ‘ 1 leaf, all CPUs perform the same work.

@

* @ 4leaves, 2 CPUs perform the same work.
®
N 16 leaves, no CPUs perform the same work.

° ° 64 leaves, CPUs handle more than 1 leaf.
In practice:

» After a few computational cycles, you always end up in the  scenario.

» This approach allows for the MPI and particle reduction operation to run in unison.



Particle Shapes @ MLASP
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e Design decisions: Task Ie
» Keep grain information ‘global’ to reduce complexity. ‘
» Standalone input file for irregular volumes. ‘
» Mesh refinement to obtain preferred resolution. '

lllustration of the mesh refinement for spherical and irregularly shaped dust grains.

Refine =0 Refine = 1 Refine =2 Refine =3

[rregular-shaped dust

Refine =0 Refine = 1 Refine =5
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Particle Shapes

Design decisions:

» Mesh refinement to obtain preferred resolution.

» Raytracing to obtain grain illumination/shadowing.

0.0 0.2

e e
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Particle mobilisation.

Regolith grain configuration
(shape, arrangement, ...)

1. Grain facet charging

2. Force balance
(Coulomb vs cohesion)

3. Detachment identification

(Coulomb vs cohesion) NG

YES

Output: Lofted grain parameters

(Size, shape, lofted velocity, grain charge)

@ N=LASP
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2D X-Z plot
Timestep: 0 e Detachment criterion (artificial):

Task 1b

Adjacent grains each carrying 103 elementary ”
charges of the same polarity. ‘

e (@rain charging setup: “

—

.~ ~, dQ/dt follows a Gaussian:

(  E, ®] + [ZF;, f(v)d3
\ h mean = Oe-, sigma 50e- S 5 ¢+ . ey

~ ”’

dQ/dt follows a Gaussian:

mean = 100e-, sigma = 50e-

Detached from surface.




Patched Charge Model Benchmark. @ MLASP
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Patched Charge Model Benchmark.

o D
. O
Plasma species

®
+

7))

2

2.0e-10

1.0e10 —

(b))

3 o2
_0.0e10 8
(&)

| -
-1.0e'10 ©

G

-2.0e-10

{0.0003

-0.00025

0.0002

0.00015

-0.0001

XAxis O

5e-5

0.000)

0.00015

0.0002

0.00025

0.0003

0.00035

I1 OOHm|

.‘\J

-0.0003

0.00025

-0.0002

0.00015

+ -0.0001

0 XAxis

5e-5

0.0001

0.00015

0.0002

{ 0.00025

0.0003

0.00035

0.0004

0.0003

0.0002

-0.0001

0
Y Axis

0.0001

0.0002

0.0003

0.0004

=LASP

Laboratory for Atmospheric and Space Physics
University of Colorado Boulder




20

Patched Charge Model Benchmark.
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Patched Charge Model Benchmark.
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Patched Charge Model Benchmark.
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Particle-in-Cell approach. @ MLASP

PinC
e PinC: C++/MPI-parallelised particle-in-cell code. 3D-g;rallei/

e PBefore: Can handle 1 object/surface.

e Today: Can handle multiple/composite objects/surfaces by leveraging the

L
Capacitance Matrix method. y \ \ /

Task 2a Multiple/composite surfaces

e Basic Particle-in-Cell algorithm:

V- E = 4mp,
V-B =0,
Particle mover
168 Integrate Egs. Of motion
VxFE=———,
c Ot
A 1 0E Interpolation of Interpolation of
VXB=—J+-—- Fields to Particles Particles to Grid
_dwp = vy, Field solver
dt Integrate Maxwell's Egs.

dv, _ gs (E +'vprp)
P

dt Mg



Particle-in-Cell approach.

PinC: C++/MPI-parallelised particle-in-cell code.

Before: Can handle 1 object/surface.

Today: Can handle multiple/composite objects/surfaces by leveraging the

Capacitance Matrix method.

Capacitance Matrix method (Miyake et al. [2009,2011)).

Relation between density and potential
(Na: # grid nodes; Ng: # body nodes)
N

G
pl=2A11¢19 (izla...,NG)a
j=1

Np

j=1

B 2 2 ;Ciidy i
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Op;,i = 2 Cij5¢s,j9 (i=1,---,Np).
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PinC
3D - parallel

Task 2a
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Particle-in-Cell approach. @ MLASP
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PinC
e PinC: C++/MPI-parallelised particle-in-cell code. / 3D-g;ra11ei/

e Before: Can handle 1 object/surface.

 Today: Can handle multiple/composite objects/surfaces by leveraging the —

Capacitance Matrix method. A | ’ /

Task 2a Multiple/composite surfaces

e Example: two spheres in a stationary plasma.

X Axis

Potential (V)
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Particle-in-Cell approach. @ MLASP
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PinC
e PinC: C++/MPI-parallelised particle-in-cell code. / 3D-1|3arallei/

e Multiple objects by leveraging the Capacitance Matrix method.

X Axis

0 5 0 5 0 2% % 3% 4 45 50 55 60 Task 2a|Multiple/composite surfaces

 Example: two differently-sized prisms in flowing plasma. ]

Potential (V)

-0.02
-0.04
-0.06

Potential (V)

-0.08



To-dos

e (Code-coupling (Tasks 3a-b).
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 Dust transport model (Task 2c).

 \Validate the framework against lab and flight
results.

Task la Task 1b Task 1c

TPG2D

serial S “

@
& #

TPG3D  GRUN '
parallel
CPUj [rregular-shaped dust

- CPUK

[q’ E, q)] + [ZF;, f(v)d3v]

Library of surfaces \ Re ollth surface map \'(Task 2b

Thank you for your attention!
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Draw here.
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