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Dust Transport.

• Dust transport - driven by impacts, exposure to solar wind plasma and ultraviolet radiation - shapes the 
properties of the lunar regolith. 


• Dust is also mobilised by human activities, representing both a technical and a health hazard.
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[Dust particles in the LRV trails; Hsu & Horányi 2012]

[Lunar Horizon Glow; Criswell 1973]



Grain Charging on a Surface.
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Conventional view
Patched Charge Model


[Wang et al. 2016; Schwan et al., 2017]



Modeling Dust Dynamics.

• From a numerical/modelling point of view, the current capabilities to study the dynamics of grain-scale 
charging processes and their interactions are limited due to the need to self-consistently merge several orders 
of magnitude in length and time scales. 


• Test-particle models.

(Major drawback: no feedback mechanism is implemented between the particle-generated and the external 
electromagnetic fields.)


• Particle-in-cell models.

(Major drawback: needed computational resources skyrocket quickly due to the need to resolve Debye 
scales.)
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Modeling Dust Dynamics.

• From a numerical/modelling point of view, the current capabilities to study the dynamics of grain-scale 
charging processes and their interactions are limited due to the need to self-consistently merge several orders 
of magnitude in length and time scales. 


• Test-particle models.

(Major drawback: no feedback mechanism is implemented between the particle-generated and the external 
electromagnetic fields.)


• Particle-in-cell models.

(Major drawback: needed computational resources skyrocket quickly due to the need to resolve Debye 
scales.)


• No framework currently exists that provide a clear path from the grain-scale mechanism responsible for lofting/
removing a dust particle from a regolith surface to an operational environment to develop and test the 
effectiveness of dust mitigation techniques. 
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Theory and Simulation.

• Objective 
Develop a framework of numerical models that couple the microphysics of grain-scaled processes with the self-
consistent solution of the near-surface plasma environment.


• Impact/Innovation 
The proposed framework will be used to merge the qualitative understanding of the microscopic processes to 
the macroscopic behaviour of the lunar regolith, providing a much-needed tool to advance the effectiveness of 
dust mitigation techniques.


• Approach 
We equip a basic particle-particle and a particle-in-cell code with a comprehensive multi-physics model and the 
necessary code-coupling mechanisms.
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Modelling Approach.
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Modelling Approach.

• Task 1 (TPG2D→TPG3D):

a. Expand the numerical model from 2D to 3D and parallelise the code.

b. Develop a force-balance model, including cohesion, adhesion, and 


microgravity effects. 

c. Develop the option to include non-spherical, irregular-shaped dust 


particles. 


• Task 2 (PinC):

a. Expand the model to include multiple and composite objects/surfaces.

b. Develop the option for prescribed electromagnetic fields and secondary particle effects. 

c. Develop a dust-kinetic model to evaluate dust transport phenomena. 


• Task 3 (Code coupling):

a. Provide a mapping structure that merges the TPG3D components into a surface. 

b. Develop the code structure in PinC to load TPG3D regolith mapping structures. 

c. Build a library of realistic regolith surfaces. 
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TPG3D.

• Parallelisation.


• OpenMP approach (shared memory).


‣ No major redesign needed.


‣ Limits the code to run within one computing node.


• MPI approach (distributed memory). 


‣ Major redesign needed.


‣ No limit on the amount of computing power that can be used.

(apart from overhead considerations).


• Major hurdle: TPG’s computational cycle implements the Barnes-Hut tree algorithm (i.e., a reduction 
operation). Parallelisation is therefore not efficient at the root level.
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Barnes-Hut tree algorithm.

• Approximation algorithm designed for n-body simulations.


• No fixed grid, so not bound by CFL constraints. 
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Barnes-Hut tree algorithm.

• Approximation algorithm designed for n-body simulations.


• Divisions are constructed depending on particle/surface segment density. 


• Short range interactions, use brute force, i.e., Coulomb’s Law. 
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Barnes-Hut tree algorithm.

• Approximation algorithm designed for n-body simulations.


• Divisions are constructed depending on particle/surface segment density. 


• Long-range interactions, use multipole expansion. 
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Barnes-Hut tree algorithm.

• Key Points: 


‣ Correct electric field values computed.


‣ Smooth transition between the ‘brute force’ and multipole part of the solver.
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Parallelisation.

• Paradigm: 

‣ Every MPI thread/CPU is responsible for a specific part of the computational domain, i.e., domain 
decomposition (temporary solution).


‣ Every MPI thread/CPU corresponds to at least one leaf of the Barnes-Hut tree.


• Key Point: 


‣ Plasma particles are distributed, grain information is ‘global.’
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Parallelisation.

• In practice: 

‣ After a few computational cycles, you always end up in the      scenario. 


‣ This approach allows for the MPI and particle reduction operation to run in unison.
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2D example, assume 16 CPUs.


1 leaf, all CPUs perform the same work.


4 leaves, 2 CPUs perform the same work.


16 leaves, no CPUs perform the same work.


64 leaves, CPUs handle more than 1 leaf.




Particle Shapes

• Design decisions: 


‣ Keep grain information ‘global’ to reduce complexity.


‣ Standalone input file for irregular volumes.


‣ Mesh refinement to obtain preferred resolution.
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Particle Shapes

• Design decisions: 


‣ Mesh refinement to obtain preferred resolution.


‣ Raytracing to obtain grain illumination/shadowing.
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Particle mobilisation.
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Regolith grain configuration 
(shape, arrangement, …)

1. Grain facet charging

2. Force balance

(Coulomb vs cohesion)

3. Detachment identification

(Coulomb vs cohesion)

Output: Lofted grain parameters

(Size, shape, lofted velocity, grain charge)

YES

NO

Time



Particle mobilisation.
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• Detachment criterion (artificial):

Adjacent grains each carrying 103 elementary 
charges of the same polarity.


• Grain charging setup:

dQ/dt follows a Gaussian:

mean = 0e-, sigma 50e-


dQ/dt follows a Gaussian:

mean = 100e-, sigma = 50e-


Detached from surface.



Patched Charge Model Benchmark.
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Patched Charge Model Benchmark.
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Patched Charge Model Benchmark.
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Patched Charge Model Benchmark.
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Patched Charge Model Benchmark.
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Particle-in-Cell approach.

• PinC: C++/MPI-parallelised particle-in-cell code.


• Before: Can handle 1 object/surface.


• Today: Can handle multiple/composite objects/surfaces by leveraging the 
Capacitance Matrix method.


• Basic Particle-in-Cell algorithm:
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Particle-in-Cell approach.
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• PinC: C++/MPI-parallelised particle-in-cell code.


• Before: Can handle 1 object/surface.


• Today: Can handle multiple/composite objects/surfaces by leveraging the 
Capacitance Matrix method.


• Capacitance Matrix method (Miyake et al. [2009,2011]).



Particle-in-Cell approach.

• PinC: C++/MPI-parallelised particle-in-cell code.


• Before: Can handle 1 object/surface.


• Today: Can handle multiple/composite objects/surfaces by leveraging the 
Capacitance Matrix method.


• Example: two spheres in a stationary plasma.

25



Particle-in-Cell approach.

• PinC: C++/MPI-parallelised particle-in-cell code.


• Multiple objects by leveraging the Capacitance Matrix method.


• Example: two differently-sized prisms in flowing plasma.
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To-dos

• Code-coupling (Tasks 3a-b).


• Dust transport model (Task 2c).


• Validate the framework against lab and flight 
results.


Thank you for your attention! 

Questions?
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Draw here.
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