
Modelling Dust Interactions Using a Fully
Kinetic Numerical Framework

In collaboration with M. Horányi, H.-W. Hsu, and X. Wang.

Jan Deca
Laboratory for Atmospheric & Space Physics

University of Colorado Boulder

This work was supported in part by NASA’s Early Stage Innovation (ESI) Appendix of SpaceTech-REDDI, Grant No.
80NSSC21K0226, and the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS)
Division at Ames Research Center.

Dust Transport.

• Dust transport - driven by impacts, exposure to solar wind plasma and ultraviolet radiation - shapes the
properties of the lunar regolith.

• Dust is also mobilised by human activities, representing both a technical and a health hazard.

1

[Dust particles in the LRV trails; Hsu & Horányi 2012]

[Lunar Horizon Glow; Criswell 1973]

Grain Charging on a Surface.

2

Conventional view
Patched Charge Model

[Wang et al. 2016; Schwan et al., 2017]

Modeling Dust Dynamics.

• From a numerical/modelling point of view, the current capabilities to study the dynamics of grain-scale
charging processes and their interactions are limited due to the need to self-consistently merge several orders
of magnitude in length and time scales.

• Test-particle models.

(Major drawback: no feedback mechanism is implemented between the particle-generated and the external
electromagnetic fields.)

• Particle-in-cell models.

(Major drawback: needed computational resources skyrocket quickly due to the need to resolve Debye
scales.)

3
Particle-in-cell approachTest-particle approach

Prescribed

fields

Modeling Dust Dynamics.

• From a numerical/modelling point of view, the current capabilities to study the dynamics of grain-scale
charging processes and their interactions are limited due to the need to self-consistently merge several orders
of magnitude in length and time scales.

• Test-particle models.

(Major drawback: no feedback mechanism is implemented between the particle-generated and the external
electromagnetic fields.)

• Particle-in-cell models.

(Major drawback: needed computational resources skyrocket quickly due to the need to resolve Debye
scales.)

• No framework currently exists that provide a clear path from the grain-scale mechanism responsible for lofting/
removing a dust particle from a regolith surface to an operational environment to develop and test the
effectiveness of dust mitigation techniques.

3

Theory and Simulation.

• Objective
Develop a framework of numerical models that couple the microphysics of grain-scaled processes with the self-
consistent solution of the near-surface plasma environment.

• Impact/Innovation
The proposed framework will be used to merge the qualitative understanding of the microscopic processes to
the macroscopic behaviour of the lunar regolith, providing a much-needed tool to advance the effectiveness of
dust mitigation techniques.

• Approach
We equip a basic particle-particle and a particle-in-cell code with a comprehensive multi-physics model and the
necessary code-coupling mechanisms.

4

Modelling Approach.

5

Modelling Approach.

• Task 1 (TPG2D→TPG3D):

a. Expand the numerical model from 2D to 3D and parallelise the code.

b. Develop a force-balance model, including cohesion, adhesion, and

microgravity effects.

c. Develop the option to include non-spherical, irregular-shaped dust

particles.

• Task 2 (PinC):

a. Expand the model to include multiple and composite objects/surfaces.

b. Develop the option for prescribed electromagnetic fields and secondary particle effects.

c. Develop a dust-kinetic model to evaluate dust transport phenomena.

• Task 3 (Code coupling):

a. Provide a mapping structure that merges the TPG3D components into a surface.

b. Develop the code structure in PinC to load TPG3D regolith mapping structures.

c. Build a library of realistic regolith surfaces.

6

TPG3D.

• Parallelisation.

• OpenMP approach (shared memory).

‣ No major redesign needed.

‣ Limits the code to run within one computing node.

• MPI approach (distributed memory).

‣ Major redesign needed.

‣ No limit on the amount of computing power that can be used.

(apart from overhead considerations).

• Major hurdle: TPG’s computational cycle implements the Barnes-Hut tree algorithm (i.e., a reduction
operation). Parallelisation is therefore not efficient at the root level.

7

Barnes-Hut tree algorithm.

• Approximation algorithm designed for n-body simulations.

• No fixed grid, so not bound by CFL constraints.

8

Barnes-Hut tree algorithm.

• Approximation algorithm designed for n-body simulations.

• No fixed grid, so not bound by CFL constraints.

• Divisions are constructed depending on particle/surface segment density.

8

Barnes-Hut tree algorithm.

• Approximation algorithm designed for n-body simulations.

• No fixed grid, so not bound by CFL constraints.

• Divisions are constructed depending on particle/surface segment density.

8

Barnes-Hut tree algorithm.

• Approximation algorithm designed for n-body simulations.

• Divisions are constructed depending on particle/surface segment density.

• Short range interactions, use brute force, i.e., Coulomb’s Law.

9

Barnes-Hut tree algorithm.

• Approximation algorithm designed for n-body simulations.

• Divisions are constructed depending on particle/surface segment density.

• Long-range interactions, use multipole expansion.

10

Barnes-Hut tree algorithm.

• Key Points:

‣ Correct electric field values computed.

‣ Smooth transition between the ‘brute force’ and multipole part of the solver.

11

E m
ag

 (n
or

m
al

is
ed

)

100μm

Parallelisation.

• Paradigm:

‣ Every MPI thread/CPU is responsible for a specific part of the computational domain, i.e., domain
decomposition (temporary solution).

‣ Every MPI thread/CPU corresponds to at least one leaf of the Barnes-Hut tree.

• Key Point:

‣ Plasma particles are distributed, grain information is ‘global.’

12

Parallelisation.

• In practice:

‣ After a few computational cycles, you always end up in the scenario.

‣ This approach allows for the MPI and particle reduction operation to run in unison.

13

2D example, assume 16 CPUs.

1 leaf, all CPUs perform the same work.

4 leaves, 2 CPUs perform the same work.

16 leaves, no CPUs perform the same work.

64 leaves, CPUs handle more than 1 leaf.

Particle Shapes

• Design decisions:

‣ Keep grain information ‘global’ to reduce complexity.

‣ Standalone input file for irregular volumes.

‣ Mesh refinement to obtain preferred resolution.

14

Particle Shapes

• Design decisions:

‣ Mesh refinement to obtain preferred resolution.

‣ Raytracing to obtain grain illumination/shadowing.

15

Particle mobilisation.

16

Regolith grain configuration
(shape, arrangement, …)

1. Grain facet charging

2. Force balance

(Coulomb vs cohesion)

3. Detachment identification

(Coulomb vs cohesion)

Output: Lofted grain parameters

(Size, shape, lofted velocity, grain charge)

YES

NO

Time

Particle mobilisation.

17

• Detachment criterion (artificial):

Adjacent grains each carrying 103 elementary
charges of the same polarity.

• Grain charging setup:

dQ/dt follows a Gaussian:

mean = 0e-, sigma 50e-

dQ/dt follows a Gaussian:

mean = 100e-, sigma = 50e-

Detached from surface.

Patched Charge Model Benchmark.

18

100μm

Vflow

Patched Charge Model Benchmark.

19

100μm

Vflow

Patched Charge Model Benchmark.

20

100μm

Patched Charge Model Benchmark.

21

100μm

Vflow

Patched Charge Model Benchmark.

22

100μm

Vflow

Particle-in-Cell approach.

• PinC: C++/MPI-parallelised particle-in-cell code.

• Before: Can handle 1 object/surface.

• Today: Can handle multiple/composite objects/surfaces by leveraging the
Capacitance Matrix method.

• Basic Particle-in-Cell algorithm:

23

Particle-in-Cell approach.

24

• PinC: C++/MPI-parallelised particle-in-cell code.

• Before: Can handle 1 object/surface.

• Today: Can handle multiple/composite objects/surfaces by leveraging the
Capacitance Matrix method.

• Capacitance Matrix method (Miyake et al. [2009,2011]).

Particle-in-Cell approach.

• PinC: C++/MPI-parallelised particle-in-cell code.

• Before: Can handle 1 object/surface.

• Today: Can handle multiple/composite objects/surfaces by leveraging the
Capacitance Matrix method.

• Example: two spheres in a stationary plasma.

25

Particle-in-Cell approach.

• PinC: C++/MPI-parallelised particle-in-cell code.

• Multiple objects by leveraging the Capacitance Matrix method.

• Example: two differently-sized prisms in flowing plasma.

26

To-dos

• Code-coupling (Tasks 3a-b).

• Dust transport model (Task 2c).

• Validate the framework against lab and flight
results.

Thank you for your attention!

Questions?

27

Draw here.

28

