

Dust Charging Mechanisms in Accelerators

https://doi.org/10.1103/PhysRevAccelBeams.25.101001

P. Belanger, R. Baartman, A. Lechner, B. Lindstrom, R. Schmidt, D. Wollmann June 15, 2023

Dust problem in the LHC

From first principles: what is the polarity of dust grains in the LHC?

Dusty Plasma, Cosmic Dust and Accelerator Dust

		Surveyor 7: 1968-023T06:21:37
Ultra-high vacuum	Yes	Yes
High energy photons	Synchrotron Radiation	Solar radiation
Free electrons	Electron clouds	Yes (plasma sheet)
Free ions	No	Yes (plasma sheet)

Some examples

D. A. Mendis (2002) "Progress in	*Negative*						
Environment	$n_e~({ m cm}^{-3})$	$k_B T$ (eV)	$n_d~({ m cm}^{-3})$	$R~(\mu{ m m})$	- Q/e	Carbon Q/m (C/kg)	
Saturn's E-ring	10	10-100	10^{-7}	1	$\sim 10^4$	$\sim 10^{-1}$	
Saturn's F-ring	10	10-100	< 10	1	$\sim 10-10^2$	$\sim 10^{-3} - 10^{-4}$	
Saturn's spokes	$0.1 - 10^2$	2	1	1	~ 10	$\sim 10^{-4}$	
Zodiacal dust disc	5	10	10^{-12}	10	$\sim 10^4$	$\sim 10^{-4}$	
Lab-plasma (DA-wave)	10^{8}	2-4	10^{4}	5	$> 10^{3}$	$> 10^{-4}$	
Lab-plasma (Dust-Ball)	10^{8}	2-4	10^{3}	5	$\sim 10^3$	$\sim 10^{-4}$	
Coulomb dust crystal	10^{9}	2	$10^4 - 10^5$	5	$\sim 10^4$	$\sim 10^{-3}$	
Large Hadron Collider	106	1-10	-	1-35	$\sim 10^3 - 10^5$	~10 ⁻¹ - 10 ⁻³	
				* assuming 5 μm C *			

• Charging \rightarrow Surface Potential

• Dynamics → Charge-to-mass ratio

Charging mechanisms in the LHC

A conservative model

Assumptions

• Electron cloud:

- Maxwellian energy distribution of low energy: 1-10 eV
- High concentration of electrons near the beam screen

Synchrotron radiation

- Total power of synchrotron radiation distributed over the LHC ring
- Only photons with energy above the work function of the material
- Dust grain
 - Conductivity expressed in the SEY
 - SEY follows the one of infinite planar slab (valid for >1 μ m grain)
 - Resistive contact with the beams screen (oxide layer)

Charging currents

• Electron collection (negative)

$$J_e(\Phi, n_e, T_e) = -\left(en_e\left(\frac{k_B T_e}{2\pi m_e}\right)^{1/2} \cdot \begin{cases} \exp\left(\frac{e\Phi}{k_B T_e}\right) & \text{for } \Phi < 0\\ \left(1 + \frac{e\Phi}{k_B T_e}\right) & \text{for } \Phi \ge 0 \end{cases}\right)$$

• Secondary electron emission (positive)

$$J_s(\Phi, n_e, T_e) = \left(en_e \left(\frac{k_B T_e}{2\pi m_e}\right)^{1/2} \cdot \frac{\exp\left(\frac{e\Phi}{k_B T_e}\right)}{(k_B T_e)^2} \cdot \eta(\Phi)\right)$$

Photoelectric emission current (positive)

$$J_{h\nu}(\Phi) = \left[e\dot{\Gamma} \left[Q_{h\nu} \delta_{h\nu} \cdot \exp\left(-\frac{e\Phi}{k_B T_{h\nu}} \right) \quad \text{for } \Phi \ge 0 \right] \right]$$

Contact discharging with the beam screen

$$J_{\rm ind}(\Phi) = \left(\frac{1}{\pi R^2 \cdot 2\varepsilon_{r,\rm ox}} \left(\frac{\sigma_{\rm ox}A_c}{\ell_{\rm ox}}\right) \left[\Phi_{\rm ind} - \Phi\right]\right) \begin{array}{l} \sim \text{5 orders of} \\ \text{magnitude smaller} \end{array}$$

Equilibrium surface potential

- Equilibrium is found from the balance of the currents
- With fixed environmental conditions: depends on electron energy

Equilibrium surface potential

- Equilibrium is found from the balance of the currents
- With fixed environmental conditions: depends on electron energy

Equilibrium surface potential (density ratio)

$$J_e + J_s + J_{h\nu} = 0 \longrightarrow \boxed{n_e} + \boxed{n_e} + \boxed{\dot{\Gamma}} = 0 \longrightarrow \boxed{\frac{n_e}{\dot{\Gamma}/c}}$$

Electron machines:

- Density ratio much lower
- Patch model need to be taken into account

Trapped dust grains

From previous slides, the main conclusion is:

- Negatively charged grains in presence of high density e-cloud (LHC)
- Positively charged grains in presence of low density e-cloud (e- storage rings)
- Let's not forget: precise calculation would be highly dependent on the shape of the grain. Dust events are a stochastic process

Opposite charge from the beam implies: orbiting motion!

Logarithmic potential

Relevant parameter: orbital stiffness

$$\mathcal{S} \equiv rac{h^2}{Q/m}$$

$$\mathcal{H}_{0} = \frac{P_{r}^{2}}{2m} + \frac{P_{\phi}^{2}}{2mr^{2}} + QV(r)$$
$$= \frac{P_{r}^{2}}{2m} + Q\left[\frac{\mathcal{S}}{2r^{2}} - V_{0}\ln(r/r_{\infty})\right]$$
$$= \frac{P_{r}^{2}}{2m} + Q\tilde{V}_{0}(r)$$

Shape parameter

Can be used to describe **circular orbits**, as well as trajectories falling into the beam (**typical UFOs**)

Based on: H. Hooverman, Charged particle orbits in a logarithmic potential, J. Appl. Phys. 34, 3505 (1963).

Multipeak measurements

Excitation Energy

- Impossible to pick up dust from the bottom?
- More appropriate to discuss the energy required to reach beam core

* Ex.: 200 nm initial separation. M. Barnes : 60-300 Hz, 10 nm vibration: 1-40 eV for UFO mass

Summary and outlook

• Polarity of dust grains in particle accelerators can be explained from first principles

- Balance of charging currents lead to equilibrium potential
- Patch charge model highlight the importance of grain geometry
- Simulations (PyECLOUD, MIGRAINe, TPG3D [LASP]) could be used to cross check and extend
- LASP measurements could be used for validation
- Dynamics can be described with orbital parameters both in e- and p+ machines
 - Multipeak measurements in the LHC
 - Dust trapping measurements in e- ring
- Release mechanisms and dust migration
 - Obviously of the biggest unknow for dust in particle accelerators
 - Adhesive forces need to be studied
 - Dust collectors and/or mitigation strategies need to be studied

Thank you! Questions?

Effect of gravity

One can formally show that gravity can be neglected if: $\frac{1}{|Q|/m}g \ll \frac{2V_0}{r_c}$ where $V_0 = \frac{N_p e/C}{2\pi\varepsilon_0}$ To First order : only deforms the orbits down.

Adhesive forces

Considered:

- 1. Van Der Waals
- 2. Image charges from the dust grain
- 3. Beam electric field
- 4. Gravity

Not considered:

1. Effect of plasma sheet!!! ()

