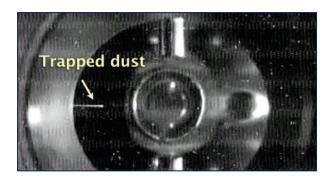
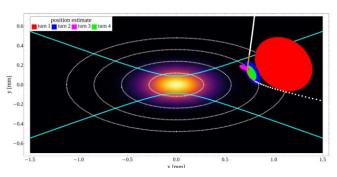


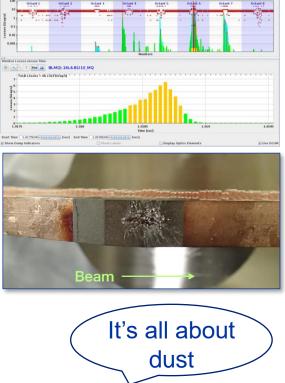
Workshop on Dust Charging and Beam-Dust Interaction in Particle Accelerators: *Wrap-up and questions for the discussion*


C. Wiesner


June 15th, 2023

Dust is everywhere

- Dust phenomena occur in...
 - Space, fusion reactors, semi-conductor industry, ...
 - Particle accelerators (vacuum chambers, RF cavities, kicker magnets...)
- Dust phenomena can occur with negatively charged particle beams (electrons, antiprotons)...
 - Dust particulates can be trapped in the beam
- ...and with positively charged particle beams (protons at LHC, positrons at SuperKEKB)
 - Dust particulates are ionized and ejected from the beam (but can cause beam losses and lifetime degradation)

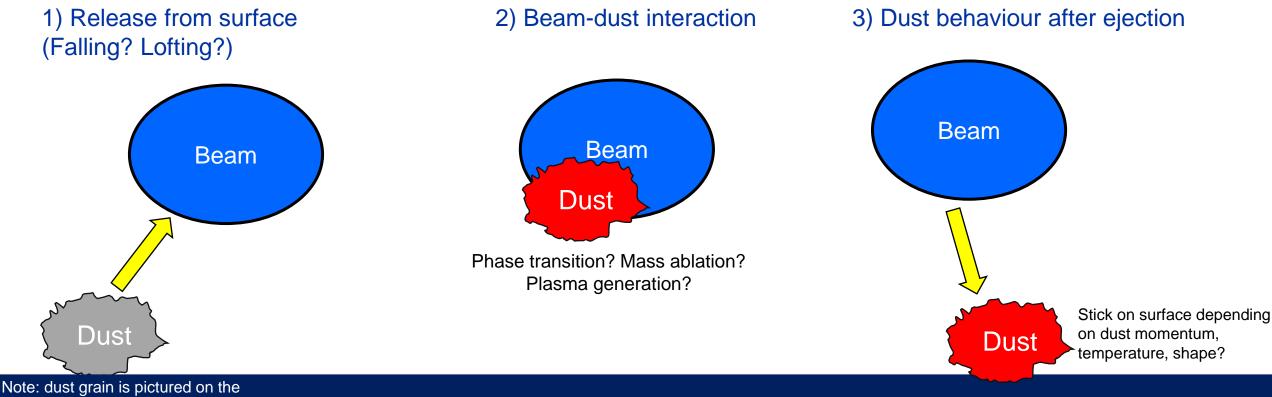


Dust is important

- Dust-beam and plasma-beam interaction can:
 - Induce beam losses, dump the beam, quench superconducting magnets, and cause downtime (UFOs at LHC)
 - Cause beam instabilities and limit the beam intensity ("16L2" events at LHC)
 - Damage equipment and restrict performance of an accelerator (SuperKEKB)
 - Have significant impact on machine protection and availability
 - Require to change particle type and completely exchange 6 km of vacuum system (HERA, DORIS)
 - Determine the acceptable surface treatments in an accelerator
 - Cause breakdowns and degradation of RF cavities (DESY, TRIUMF)
 - Limit the performance reach of future energy-frontier and intensity-frontier machines if not understood and anticipated adequately (FCC-ee)
- Dust generation has to be considered from the design phase of an accelerator and of new equipment – otherwise you might pay a high price...

Dust is challenging

- Understanding dust-surface, dust-beam and plasma-beam interaction is highly relevant...
- …and scientifically challenging
 - "God made matter, the surface was invented by the devil" (W. Pauli)
 - Requires multi-physics approach
- There is a lot of knowledge...
 - Experience from past accelerators
 - Different accelerator labs
 - Space and fusion community
- ...but we have to connect the dots!



Beam-dust interaction (1/2)

Note: dust grain is pictured on the bottom for illustration purposes

Vacuum pipe (conducting, possibly with thin insulation layer)

Beam-dust interaction (2/2)

1) Release from surface

- Dust charging
 - Electron flux due to e^{-} clouds (\checkmark)
 - Synchrotron photon flux (\checkmark)
- Beam-induced E field ✓
- Surface conditions (contact resistance, ...) and dust grain conditions (✓)
- Full physics model/ simulation tool missing? How is a charged particulate released in view of image charges?

2) Beam-dust (-plasma) interaction

- Solid dust particulate interacting with charged particle beam
 - Simulation codes available at CERN and good agreement with beam-loss data at LHC ✓
- Gas and plasma interacting with the charged particle beam
 - "16L2" events after evaporating solid particulates
 - Sudden Beam Losses at SuperKEKB?

3) Interaction of ejected dust particle with surface

- Temperature of the dust particle (✓)
- What happens to the dust particulates when they exit the beam?
- Can this explain UFO (de-) conditioning?
- Is there a synergy in understanding "fireball" generation at SuperKEKB?
- How is this relevant for RF cavities?

Studies: dust release and charging

Lab experiments

- Experimentally characterize dust charging and lofting of mono-layer dust or "single" dust particulates (LASP, Boulder)
 - What are the relevant parameters to be experimentally studied?
- Do we need a dedicated test stand at CERN?

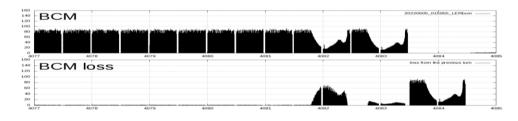
Simulations

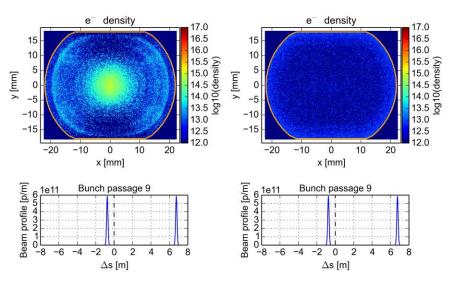
- Reproduce lab measurements with analytical or numerical calculations
- Reproduce observations at particle accelerators with numerical calculations

Beam experiments

- LHC
 - Test installation of LESS-treated chamber in the LHC (including knocker)
 - Test with displaced bunches
 - Dedicated experiment at LHC (requires / risk analysis)?
 - Improve UFO monitoring outside cryogenic arcs?
- CERN injectors (no storage rings...)?
- Direct (optical) measurement of dust trajectories?
- Experiments at SuperKEKB?

"Back to the future": many impressive (lab and accelerator) experiments performed in the past..





Fireball (?)

Studies: plasma-beam interaction

- Phase transition and plasma-beam interaction
 - How do we explain the Sudden Beam Losses at SuperKEKB?
 - What can we learn from CERN "16L2" events?
 - What are the relevant physics parameter? What simulation tool(s) do we need?
 - What can we learn from the experience of the fusion community?
- "16L2" open questions (L. Mether)
 - The precise release mechanism and phase transformation
 - The evolution (extent, rate of expansion) of the formed gas
 - Modelling of the electron-ion clouds and instabilities considering aspects of completely beam-dominated system (as usual for eclouds) and more typical plasmas: missing elements are, e.g., neutral macro-particles, particle collisions...

 N_2 gas, 10^{21} m $^{-3}$

Studies: dust migration and vacuum beam screens

- Migration of non-charged dust (beam-independent) can have significant impact and can be largely reduced with appropriate measures (where applicable): FLASH, XFEL
- Migration of *charged dust* in the beam has been observed at particle accelerators (e.g. Photon Factory – Advanced Ring, KEK)
- Dust migration in particular relevant for RF cavities (e.g. TRIUMF)
 - Can cause degradation of cavity performances
 - Can impact especially accelerators with large RF systems: FCC-ee...
- How can migration of charged dust be blocked or limited?
- Does dust migration play a role for LHC UFO deconditioning?
- LHC beam screens
 - Does it make sense to newly clean (some?) beam screens before installation (or apply different installation procedures) and monitor UFO rate?
 - Can we take dust samples of beam screens before installation in the LHC for reference?
 - Can we explain the difference in the UFO rate between newly installed dipoles and quadrupoles?

Experimental studies on dust

- Particularly interesting to learn about the experimental work on dust in the different domains: Fusion, Space Research, Accelerators
- Fusion research
 - Sophisticated devices to bring a well-defined dust population into the fusion reactor, for controlled experiments to be compared with complex theoretical models

• Space research

- Since decades, experiment to study various aspects of dust issues in space. This includes dust accelerators, one in operation at LASP (Boulder, University of Colorado)
- Capable of simulating high-speed impacts of dust grains by electrostatically accelerating dust particles to cosmic speeds at several megavolts
- Experiments to understand dust lofting with parameters similar to accelerators

Accelerator research

- Understand lofting of dust grains into the beam and understand the dynamics for dust grains in the beam
- Experiments at SLAC for PEP2
- A number of experiments at KEK, starting the beginning of the 90th until recently, at different machines

Thank you!

- A great thank you to all of you...
 - for your contributions to this workshop,
 - for the excellent presentations,
 - for the amazing discussions!
- Looking forward to future collaborations!

Thank you very much for your attention!

home.cern

Workshop introduction: initial questions

- How are dust particles charged in accelerators?
- How are they released from the surface?
- How does the observed conditioning work?
- Looking into the future: will beam dust interactions be limiting in future accelerators and what can we do about this?

