Dust and beam instabilities: The "16L2" events at LHC - what we know, what we do not know

L. Mether Accelerator and Beam Physics group, CERN

Based on work by many colleagues from: BE-ABP, BE-OP, SY-BI, SY-RF, SY-STI, TE-CRG, TE-MPE, TE-VSC

Workshop on Dust Charging and Beam-Dust Interaction in Particle Accelerators CERN 13-15 June 2023

Introduction

- The so-called "16L2" events occurred repeatedly during LHC operation in 2017:
 - » Sudden, high beam losses in half-cell 16L2 with characteristic time profile
 - » Coherent beam motion with very fast rise times

ightarrow Systematically lead to beam dumps due to high losses in 16L2 or collimation region

Introduction

- During 2017, in total 67 fills were prematurely dumped by 16L2 events
 - » Significant impact on luminosity production until mitigation measures were identified
- o The bunch number had to be limited to avoid events for most of the year
 - » Could be partly compensated by increasing bunch intensity
- o The LHC nevertheless reached its target integrated luminosity for the year

Outline

o Introduction

\circ Losses

- » Loss localization
- » Source of losses
- » Loss characteristics and interpretation
- Instabilities
 - » Instability characteristics and observations
 - » Simulation model
- Release mechanism and mitigation
- Conclusion

Loss localisation

• Energy deposition simulations (FLUKA) determined location of loss source to within ~1.3 m

Source of losses

- Before the start of the 2017 LHC run, the sector where 16L2 is located was warmed up to room temperature for the exchange of a magnet
 - » The precise location of the losses corresponds to where a pumping port was connected to both beam apertures for the venting of the sector
- Most likely source of events: an accidental air inlet after pump-down with the beam screens at 20 K, leading to formation of "frost" of air (N₂ and O₂) on the beam screens

Source of losses

- Before the start of the 2017 LHC run, the sector where 16L2 is located was warmed up to room temperature for the exchange of a magnet
 - » The precise location of the losses corresponds to where a pumping port was connected to both beam apertures for the venting of the sector
- Most likely source of events: an accidental air inlet after pump-down with the beam screens at 20 K, leading to formation of "frost" of air (N₂ and O₂) on the beam screens
 - » Contamination by atmospheric air confirmed during warm-up at the end of 2017

	Steady state losses
Typical duration	Entire fill
Typical loss rate	~1 μGy/s
Beam instability	No
Beam dump	No

	Steady state losses	UFO-like spikes	
Typical duration	Entire fill	~1 ms	
Typical loss rate	~1 μGy/s	1-100 mGy/s	
Beam instability	No	No	
Beam dump	No	Typically not	

Typical dust particle event (not in 16L2) (09/05/2016, 01h55)

	Steady state losses	UFO-like spikes	Loss plateau
Typical duration	Entire fill	~1 ms	~10 ms
Typical loss rate	~1 μGy/s	1-100 mGy/s	10-100 mGy/s
Beam instability	No	No	Yes
Beam dump	No	Typically not	Yes

	Steady state losses	UFO-like spikes	Loss plateau
Typical duration	Entire fill	~1 ms	~10 ms
Typical loss rate	~1 μGy/s	1-100 mGy/s	10-100 mGy/s
Beam instability	No	No	Yes
Beam dump	No	Typically not	Yes
Possible explanation	Beam-gas scattering due to N ₂ outgassing	N ₂ particle enters the beam, is positively charged and heated up by Coulomb interactions and is repelled by the beam	N ₂ particle enters the beam, is positively charged, but heated up sufficiently to undergo a phase transition to gas

Typical 16L2 event (23/06/2017, 00h30)

Possibility of macro-particle phase transition

Beam interaction with macro-particle: Ο

A. Lechner

10 um

20 um

30 um

40 um

50 um 70 um

100 um

- Coulomb interactions \rightarrow ionize and deposit energy in macro-particle »
- Inelastic nuclear interactions \rightarrow particle showers, detected by beam loss monitors (BLMs) »

While the inelastic scattering events don't contribute to energy deposition, they allow to estimate the path length of protons within the macro-particle, and therefore the deposited energy

Minimum required energy density estimated

Stopping power and scattering length determined by FLUKA simulations

$$\epsilon_d(N_i, r) = \left(\frac{dE}{dx}\right)_r N_i \lambda \frac{3}{4\pi r^3} \quad [MeV/cm^3]$$

Number of inelastic collisions estimated from BLM signals

Assuming spherical shape

Energy deposition in solid nitrogen macroparticles with different radii

Workshop on Dust Charging and Beam-Dust Interaction in Particle Accelerators, CERN, 13-15 June 2023

Possibility of macroparticle phase transition

- » The presence of gas could explain the observed loss duration of tens of milliseconds, which is not possible for solid macroparticles, since they are repelled by the beam
- The atomic gas density can be estimated based on the measured loss rates

Outline

o Introduction

o Losses

- » Loss localization
- » Source of losses
- » Loss characteristics and interpretation

\circ Instabilities

- » Instability characteristics and observations
- » Simulation model
- Release mechanism and mitigation
- Conclusion

Instability characteristics

- The 16L2 beam instabilities were very fast, with rise times of 10-100 turns
 - » Impossible to damp with any available means
 - » Such fast instabilities usually not observed after the beam commissioning phase

L. Mether

Instability characteristics

- The 16L2 beam instabilities were very fast, with rise times of 10-100 turns 0
 - Impossible to damp with any available means »
 - Such fast instabilities usually not observed after the beam commissioning phase »
- Similarly fast instabilities can be caused by electron cloud at the very beginning of Ο operation after air exposure, before the beam screens are conditioned
 - However, the effect is then accumulated over most of the machine as opposed to » over only a few meters in this case \rightarrow very strong interaction with beam in 16L2

Instability during beam commissioning

Workshop on Dust Charging and Beam-Dust Interaction in Particle Accelerators, CERN, 13-15 June 2023

Additional observations

- Additional observations from a few events suggest that large electron densities could have been present
- o Intra-bunch motion at the tail of bunches
 - » Electrons are sufficiently light to be able to move significantly over the length of a bunch
- $\circ~$ Large positive tune shifts (up to 2×10⁻²)
 - Positive tune shift, i.e., additional focusing, can be caused by negative charges in the beam

B. Salvant, T. Levens

Instability modelling

- Analytical estimations and first simulations indicated that an electron density of around 10¹⁷ m⁻³ over 10 cm could give rise to the observed effects
- To gain more confidence in our understanding of the assumed sequence of events, aimed to consistently model in simulations the evolution from gas to beam instability

- To reach a consistent picture, several ingredients which have a negligible effect under usual conditions in the machine had to be added to the simulation models
 - » Presence of both positively and negatively charged ionization products

- To reach a consistent picture, several ingredients which have a negligible effect under usual conditions in the machine had to be added to the simulation models
 - » Presence of both positively and negatively charged ionization products

 N_2 gas, 10^{21} m⁻³

- To reach a consistent picture, several ingredients which have a negligible effect under usual conditions in the machine had to be added to the simulation models
 - » Presence of both positively and negatively charged ionization products
 - » Electron impact-ionization

L. Mether

- To reach a consistent picture, several ingredients which have a negligible effect under usual conditions in the machine had to be added to the simulation models
 - » Presence of both positively and negatively charged ionization products
 - » Electron impact-ionization
- With these ingredients, we can reproduce the events to the order of magnitude level

Outline

o Introduction

o Losses

- » Loss localization
- » Source of losses
- » Loss characteristics and interpretation
- Instabilities
 - » Instability characteristics and observations
 - » Simulation model

o Release mechanism and mitigation

• Conclusion

Electron cloud as trigger

- There is strong evidence that electron clouds, in addition to causing the instability, played an important role in triggering the events
- Steady state losses significantly reduced during single test with e-cloud free bunch pattern (25 ns → 50 ns bunch spacing), but strongly limits number of bunches

Mitigation from 8b+4e scheme

 Operating with e-cloud reducing "8b+4e" bunch pattern lead to a strong reduction of spikes (UFO-like events) and dump events

RF stable phase measurement

Mitigation from 8b+4e scheme

- Operating with e-cloud reducing "8b+4e" bunch pattern lead to a strong reduction of spikes (UFO-like events) and dump events
 - » Enabled stable operation with 1900 bunches and bunch intensity up to $1.15 \times 10^{11} \, \text{p}^+$

Mitigation from solenoid

- Installation of a solenoid in the field free region of 16L2 further improved the situation
 - » The solenoid mitigates e-cloud build-up by confining the electrons along field lines
- $\,\circ\,\,$ Allowed another increase in bunch intensity to $1.25\times10^{11}\,p^{+}$

Mitigation from solenoid

- o Installation of a solenoid in the field free region of 16L2 further improved the situation
- Simulations show that the solenoid field also has a mitigating effect on the build-up of electron density from a neutral gas density
 - → Could prevent instability and beam dump even after gas formation has occurred

Conclusion

- The 16L2 events were caused by macro-particles released from a source of frozen air (N₂ and O₂) due to an accidental air inlet with beam screens at cold (20 K)
 - » Presence of air molecules confirmed by measurements during subsequent warm-up
- Clear experimental evidence that electron cloud was involved in/responsible for the release process of the macro-particles
 - » Due to charging of the particle?
- Very strong indications that the beam could deposit sufficient energy in a particle to cause a phase transition to gas → the defining feature of the 16L2 events
 - » Crucial for explaining both the loss profile and the strong beam instabilities
- Strong indications that high electron densities were responsible for the associated beam instabilities
 - » Qualitatively reproduced in simulation models, but only after including effect of generated ions and electron-induced ionization

L. Mether

Pressure ≈ 1 mbar at room temperature (300K) Volume $\approx 4 \text{ m}^3$ Mol of Air ≈ 0.3 $M_{N2} \approx 8.5 \text{ g}$ Density of solid N₂ $\approx 0.8 \text{ g/cm}^3$

Condensed Air $V_c \approx 10.5 \text{ cm}^3$ per beam line

 $V_{STP} \approx 7 l per beam line$

Estimated quantity of water vapor

$M_{H2O} \approx 0.1 \text{ g per beam pipe}$

Workshop on Dust Charging and Beam-Dust Interaction in Particle Accelerators, CERN, 13-15 June 2023

70

Mitigation from solenoid

- Installation of a solenoid in the field free region of 16L2 further improved the situation
 - » Decreased steady state losses by 60 70 %

Impact on performance

- LHC performance in 2017 what could it have looked like without the 16L2 issue?
 - » The corrector current mitigation allowed to run with 2556 bunches for 12 days
 - » Assume the same luminosity production per available day for all physics periods
 - Remove fault-time explicitly due to 16L2 (beam loss root cause, beam screen flushing...)
 - Ramp-ups, special physics periods, MDs etc. not included

» Luminosity gain going to 30 cm β^* and 1.22 × 10¹¹ ppb estimated to 20% (after TS2)

Impact on performance

- LHC performance in 2017 what could it have looked like without the 16L2 issue?
 - » The corrector current mitigation allowed to run with 2556 bunches for 12 days
 - » Assume the same luminosity production per available day for all physics periods
 - Remove fault-time explicitly due to 16L2 (beam loss root cause, beam screen flushing...)
 - Ramp-ups, special physics periods, MDs etc. not included

Instability modelling

- \circ For a tune shift of 10⁻², the required electron density is ~5e17 m⁻³ over 10 cm
 - » Estimated based on formula for ion trapping in electron machines
- An equivalent broad-band resonator impedance model for an e-cloud
 - » Based on F. Zimmermann et al
 - » Shunt impedance $R_s = 150 500 M\Omega/m$ at frequency $f_r = 2.6 GHz$
 - » Could reproduce observed rise time and intra-bunch motion
- Electron cloud simulations confirm that a density of 10¹⁷ m⁻³ over 10 cm may lead to
 - » A positive tune shift of 10⁻², instability rise times below 100 turns, and intra-bunch motion at the tail of the bunch

X. Buffat

N. Biancacci et.al

Ion distribution

"Rings" in the ion distribution consist of ions generated at different bunch passages

• The number of rings corresponds to the time it takes for the ions to reach the chamber wall and is determined by the ion e-field

Multi-species build-up

Multi-species simulations show that electron multipacting becomes less important than beam-induced ionization from gas densities around $10^{20} N_2/m^3$ and the dynamics are qualitatively and quantitatively different compared to single-species simulations

L. Mether

Workshop on Dust Charging and Beam-Dust Interaction in Particle Accelerators, CERN, 13-15 June 2023

Stability studies

The first multi-species beam dynamics simulations show instabilities from gas densities of $10^{22} \text{ N}_2/\text{m}^3$ over the length L = 10 cm, corresponding to $10^{21} L^{-1} \text{m}^{-2}$

- This covers only the upper range of the observed instabilities in the machine $(10^{19} 10^{21} L^{-1} m^{-2})$
- Electron-induced ionization may help to increase the electron and ion densities for a given gas density

L. Mether

Workshop on Dust Charging and Beam-Dust Interaction in Particle Accelerators, CERN, 13-15 June 2023

Electron-induced ionization

- $\circ~$ The beam-gas ionization cross-section at injection and top energy is estimated to be around 2 Mb = 2 \times 10⁻¹⁸ cm²
- Electrons in the energy range of 50 500 eV have a 50 100 times larger ionization cross section than the beam particles
- The amount of ionization depends on the electron energy distribution during the simulations

FIG. 1. (Color online) Electron-impact-ionization cross sections σ_{ion} of nitrogen recommended by Itikawa [16], measured by Rapp and Englander-Golden [17], and determined using the BEB model [18].

Electron energy spectrum

Electron energies during the multi-species build-up were previously analysed

• See <u>e-cloud meeting #67</u>

Recent studies and development (2019)

- Implementation of cross-species ionization
 - For the implementation of the cross-species ionization, we keep the same simplifying assumptions as are made for the beam-induced ionization
 - Assume a uniform gas density in the chamber
 (no neutral macro-particles, no collisions → not full-scale plasma simulations)
 - Single ionization only

• See <u>e-cloud meeting #69</u>

The problems in 16L2 were caused by air frozen inside the beam chamber, through the following sequence of events:

A macro-particle of frozen air (N_2, O_2) is detached, triggered by e-cloud?

The problems in 16L2 were caused by air frozen inside the beam chamber, through the following sequence of events:

Workshop on Dust Charging and Beam-Dust Interaction in Particle Accelerators, CERN, 13-15 June 2023

The problems in 16L2 were caused by air frozen inside the beam chamber, through the following sequence of events:

Workshop on Dust Charging and Beam-Dust Interaction in Particle Accelerators, CERN, 13-15 June 2023

