TREX-DM
A search for low-mass WIMPS with mM

Theopisti Dafni
tdafni@unizar.es
Centro de Astropartículas y Física de Altas energías
Universidad de Zaragoza
Outline

What, Why and How .. Is TREX-DM
Past and current challenges
Prospects
TREX-DM

- Detector looking for low-mass WIMPs
- HP (up to 10 bar), symmetrical gas TPC
 - Active volume of 20L @ 10bar
 (~0.32 kg Ar or ~0.16 kg Ne)
- Shielding
 - 5cm copper + 20cm lead walls
 - Polyethylene ceiling + water
- Located at Laboratorio Subterráneo de Canfranc (LSC) (2400 m.w.e.)
Purpose and motivation

- Community interest shifted to low masses (< 10 GeV/c^2)

- Requisites:
 - Light nuclei as target
 - Very low energy threshold (< 1 keVee)
 - Low background level

1 event/kg/day
1 event/tonne/year
Why Gas TPC?

T-REX: merge MPGD-read TPC + low background techniques

TPCs for Rare-Event searches
- Target selection flexibility
- Low energy threshold
- Highly segmented readouts available
- Access to rich topological information

Micromegas
- Consolidated structures
- Microbulk flavour particularly interesting
 - Low intrinsic radioactivity
 - Good energy resolution
 - Low energy threshold
 - Topological information
 - Scaling-up

11th TPC Symposium Theopisti Dafni Paris, December 2023
Equipping TREX-DM with microbulk mM

- Biggest microbulk surface built
- Radioactivity Control in process
- Energy resolution
- Segmentation 512 channels: 256 X strips, 256 Y strips

Building TREX-DM with the new mM
What can TREX-DM do?

- Probe uncharted area
- Offer a new technology
- Change target
Data-taking at 4 bar, sealed mode
Connectivity issues with mM
Background level 2 orders higher than expected
\(^{222}\text{Rn}\) Contamination, reduced to 1 order

2018: Installation at LSC

2019-2021: Data taking with Ar & Ne

June 2022: New Micromegas

July 2023: Commissioning @LAB2500

Sep 2022-July 2023: Relocation tasks

Aug 2023 – present: Data-taking for comparison

Some issues came up

Site preparation (electrical, gas, crane, …)
Chamber transportation and installation
Lead shielding assembling
DAQ & SlowControl re-commissioning
Leak tests, High Voltage tests

…
So, currently...

<table>
<thead>
<tr>
<th>$E_{th} ,(\text{eV}_{ee})$</th>
<th>$B(\text{dru})$</th>
<th>Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>1000</td>
<td>100 Ar-1%Iso</td>
</tr>
</tbody>
</table>

(dru = keV$^{-1}$ kg$^{-1}$ day$^{-1}$)
How can it be improved?

- Main Challenges to be addressed
 - Energy threshold
 - Background level
 - Gas composition
 - Operation stability
How can it be improved? (I)

- Main Challenges to be addressed
 - **Energy threshold**
 - preamplification volume (with a GEM?) factors would allow very low energy threshold (even single electron)
 - Big microbulk mM @1bar (x100)
 - Small microbulk mM @1-10bar (x100 to x10)

publication in preparation
How can it be improved? (Ib)

• Main Challenges to be addressed
 o Energy threshold
 • preamplification volume (with a GEM?)
 factors would allow very low energy threshold
 (even single electron)
 o Big microbulk mM @1bar (x100)
 o Small microbulk mM @1-10bar
 (x100 to x10)
 • Low-energy calibrations
 o ^{37}Ar (2.82 keV, 0.27 keV)
 • Used in XENON1T and NEWS-G

In a small setup @Saclay
How can it be improved? (Ic)

- Main Challenges to be addressed
 - **Energy threshold**
 - Preamplification volume (with a GEM?) factors would allow very low energy threshold (even single electron)
 - Big microbulk mM @1bar (x100)
 - Small microbulk mM @1-10bar (x100 to x10)
 - Low-energy calibrations
 - 37Ar (2.82 keV, 0.27 keV)
 - Used in XENON1T and NEWS-G

<table>
<thead>
<tr>
<th>E_{th} (eV$_{ee}$)</th>
<th>B (dru)</th>
<th>Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>1000</td>
<td>100</td>
</tr>
<tr>
<td>A</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>
• Main Challenges to be addressed
 o Energy threshold
 o **Background level**
 • Initially dominated by 222Rn, attributed to the purifiers
 • Switched from sealed mode to open loop:
 o 600dru to 100dru (dru = keV$^{-1}$ kg$^{-1}$ day$^{-1}$)
 • June 2022-now:
 o 222Rn progeny contamination on mylar cathode surface
 o Changing to a cleaner cathode estimate: 1-10dru

222Rn
(3.82 d)

218Po
(3.1 min)

214Pb
(26.8 min)

214Bi
(19.9 min)

214Po
(1.64 × 104)

210Pb
(22.3 y)

210Bi
(5.01 d)

210Po
(138 d)

206Pb
(stable)
How can it be improved? (IIb)

- Main Challenges to be addressed
 - Energy threshold
 - **Background level**
 - Initially dominated by 222Rn, attributed to the purifiers
 - Switched from sealed mode to open loop:
 - 600dru to 100dru
 - June 2022-now:
 - 222Rn progeny contamination on mylar cathode surface
 - Changing to a cleaner cathode estimate: 1-10dru
 - AlphaCAMM:
 - screening α surface contamination
 - Goal sensitivity: 100nBq/cm2
How can it be improved? (IIc)

- Main Challenges to be addressed
 - Energy threshold
 - **Background level**
 - Initially dominated by 222Rn, attributed to the purifiers
 - Switched from sealed mode to open loop:
 - 600dru to 100dru
 - June 2022-now:
 - 222Rn progeny contamination on mylar cathode surface
 - Changing to a cleaner cathode estimate: 1-10dru
 - AlphaCAMM:
 - screening α surface contamination
 - Goal sensitivity: 100nBq/cm2

<table>
<thead>
<tr>
<th>E_{th} (eV$_{ee}$)</th>
<th>B (dru)</th>
<th>Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>1000</td>
<td>100</td>
</tr>
<tr>
<td>A</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>B</td>
<td>50</td>
<td>1</td>
</tr>
</tbody>
</table>

Exposure 0.32 kg y
How can it be improved? (III)

- Main Challenges to be addressed
 - Energy threshold
 - Background level
 - **Gas composition improvement**
 - Target change (Ne, Ar depleted)
 - Increasing presence of H
How can it be improved? (IIIb)

- Main Challenges to be addressed
 - Energy threshold
 - Background level
 - **Gas composition improvement**
 - Target change (Ne, Ar depleted)
 - Increasing presence of H

<table>
<thead>
<tr>
<th>E_{th} (eV$_{ee}$)</th>
<th>B (dru)</th>
<th>Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z 1000</td>
<td>100</td>
<td>Ar-1%Iso</td>
</tr>
<tr>
<td>A 50</td>
<td>100</td>
<td>Ar-1%Iso</td>
</tr>
<tr>
<td>B 50</td>
<td>1</td>
<td>Ar-1%Iso</td>
</tr>
<tr>
<td>C 50</td>
<td>1</td>
<td>Ar-10%Iso</td>
</tr>
</tbody>
</table>

Exposure 0.32 kg y
How can it be improved? (IV)

- Main Challenges to be addressed
 - Background level
 - Energy threshold
 - Gas composition improvement
 - **Operation stability**
 - Gas quality
 - Noise
 - Voltage operations
 - Leak currents at detector connections
<table>
<thead>
<tr>
<th>E_{th} (eV$_{ee}$)</th>
<th>B(dru)</th>
<th>Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z 1000</td>
<td>100</td>
<td>Ar-1%Iso</td>
</tr>
<tr>
<td>A 50</td>
<td>100</td>
<td>Ar-1%Iso</td>
</tr>
<tr>
<td>B 50</td>
<td>1</td>
<td>Ar-1%Iso</td>
</tr>
<tr>
<td>C 50</td>
<td>1</td>
<td>Ar-10%Iso</td>
</tr>
<tr>
<td>D 50</td>
<td>0.1</td>
<td>Ne-10%Iso</td>
</tr>
</tbody>
</table>

Exposure 0.32 kg y

Exposure 1.6 kg y
Conclusions

- TREX-DM offers a technology that can be very sensitive to low-mass WIMPs
- Continuous R&D gives birth to ‘spin-off’ projects of great interest
- Despite the delay due to the relocation, TREX-DM continues data taking / near term roadmap towards competitive background level & threshold
TREX-DM

• Relevant publications:

 • Gaseous time projection chambers for rare event detection: Results from the T-REX project. II. Dark matter. *JCAP 01 (2016) 034*. Err: *JCAP 05(2016) E01*
 • Assessment of material radiopurity for Rare Event experiments using Micromegas. *JINST 8 (2013) C11012*
 • Radiopurity of Micromegas readout planes. *Astrop. Phys. 34 (2011) 354-359*
 • Development and performance of Microbulk Micromegas detectors, *2010 JINST 5 P02001*
 • Readout technologies for directional WIMP Dark Matter detection. *Phys. Rept. 662 (2016) 1-46*
 • Microbulk Micromegas in non-flammable mixtures of argon and neon at high pressure, *2022 JINST 17 P07032*
 • AlphaCAMM, a Micromegas-based camera for high-sensitivity screening of alpha surface contamination, *2022 JINST 17 P08035*