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What do we already know about the Migdal effect ?

JOURNAL of PHYSICS 1941

A. Migdal publications:

e |onisation in nuclear reactions [1]

IONIZATION OF ATOMS ACCOMPANYING o- and B-DECAY

e |onisation in radioactive decays [2]

(Received November 15, 1940)

R g L e e e First observations of the Migdal effect in :

Arkady Migdal
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Migdal effect searches in liquid/gases using neutron scattering
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1. Dense medium.

2 NR+EL transitions in
close proximity.

3. Signal from enhanced
S1 and S2 due to X-rays
from L and M shells.

4. Experiment at LLNL with
fast neutrons from DT
generator.

5. LZ experiment at SURF

with fast neutrons from
DD generator.

High pressure Ar (1 bar) and

Xe (5 bar).

Looking for two-cluster signals from
NR+Migdal electron (cluster A).
and characteristic X-ray (cluster B).
Experiment at in Tsukuba with 565
keV neutrons from "Li(p, n)'Be
reaction at an irradiation facility at
the National Institute of Advanced
Industrial Science and Technology
(AIST), Japan.
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1.  Low pressure operation at
66 mbar.

2.  Enough mass as a target for
fast neutrons from DD/DT
neutron generators.

3. NR and electrons tracks with
5 keV threshold long enough
for optical detection to
provide direction and dE/dx
information.

4. Experiment at ISIS/NILE
(UK).




Migdal effect searches in liquid/gases using neutron scattering.
LZ experiment with DD neutron generator.
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J. Bang, A. Vaitkus, C. Ding on behalf of the LZ Collaboration at UCLA Dark Matter 2023 03/31/2023

Simulations:

1. N shell Migdal is too similar to NR

2. M Shell: Expected 152 events, with +1 keVee 3
L Shell: Expected 6 events, with +5 keVee

4. K shell Migdal is too few

Results:

1. Collected 36k single scatter events

E>20 keVnr (after cuts)

2. Main backgrounds: multiple scatters and
inelastic scattering together with compton
scattering with unresolved position

3. In preliminary high-S2 region analysis,
observing 23 events on a background
9.610.5(sys). Observed excess consistent with
Migdal signal predicted by Ibe and Cox. Profile
Likelihood Ratio (PLR) analysis is being finaliged.


https://indico.cern.ch/event/1188759/contributions/5222299/attachments/2622583/4534820/UCLA%202023%20Dark%20Matter%20-%20Migdal%20Search%20in%20LZ%20-%20Jeanne%20Bang.pdf

Migdal effect searches in liquid/gases using neutron scattering.

Experiment at ILL with DT neutron generator.
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Migdal effect searches in Ar and Xe using neutron scattering.
MIRACLUE experiment with "Li(p, n)’Be neutron beam.
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K. Nakamura et al. Detection capability of the Migdal effect for argon and xenon nuclei with position-sensitive gaseous detectors 8

Progress of Theoretical and Experimental Physics, Volume 2021, Issue 1, January 2021, 013C01, https://doi.org/10.1093/ptep/ptaa162
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The MIGDAL experiment

Create a dedicated experiment for the unambiguous observation of the Migdal

Nucl il '
/ sl seesl We are the only experiment

Neutron —_—
D-T/D-D > aiming to observe the nuclear
source igdal electron and electron recoils emerging

M
\From same vertex from a common vertex

e Phase 1: Observe the effect in CF4 in high energy recoils
e Phase 2: Observe the Migdal effect in CF4 + noble gases

effect in nuclear scattering:

H. Araujo et al., The MIGDAL experiment: Measuring a rare atomic process to aid the search for dark matter.



https://www.sciencedirect.com/science/article/pii/S0927650523000397?via%3Dihub

The MIGDAL experiment

Amplitude

neutron o~ R CF, gas

Low-pressure gas: 50 Torr of CF,
o Extended particle tracks
o  Avoid gamma interactions
o  Can stably work with fraction of Ar
TPC Signal amplification
0 2 xglass-GEMs (Cu + Ni cladded)

Readout :
o  Optical : Camera + photomultiplier tube
o Charge: GEMs + 120 ITO anode strips
High-yield neutron generator
o D-D:2.47 MeV (10°n/s)
o D-T:14.7 MeV (10™n/s)
o Defined beam, “clear” through TPC
Electron and nuclear recoil tracks
o Migdal: NR+ER tracks, common vertex
o NR and ER have very different dE/dx
o 5 keV electron threshold
5.9 keV X-rays from Fe-55 induce 5.2
keV photoelectrons from F for calibration
at threshold. 10



The MIGDAL optical-TPC

Two glass GEMs one Cu-
and one Ni-cladded :

- thickness: 550 ym
- OD /pitch: 170/280 pm

- active area: 10x10 cm?

- total gain ~10°

ITO strips wire bonded to
readout

- 120 strips
- width/pitch: 0.65/0.83 mm

Two field shaping copper
wires

TPC inside of the central aluminium cube
Drift gap: 3 cm between woven mesh and cascade of two glass-GEMs (E
Transfer and signal induction gaps : 2 mm
Low outgassing materials; vacuum before fill 2*10° mbar; signal unchanged several days after fill 11

=200 V/mm for minimum electron diffusion)

DRIFT



Light and charge readout

A\

ITO anode strips
Post-GEM ionisation
Readout of (x,z) plane
Pitch: 833 pym

Digitised at 2 ns/sample
(Drift velocity: 130 ym/ns)

qCMOS camera

(Hamamatsu ORCA - QUEST)
Detects GEM scintillation through
glass viewport behind ITO anode
Readout of (x,y) plane

Exposure: 8.33 ms/frame
(continuous)

Px scale: 39 ym (2x2 binning)
Lens: EHD-25085-C; 25mm f/0.85

VUV PMT (Hamamatsu R11410)
Detects primary and secondary
(GEM) scintillation

Absolute depth (z) coordinate
Digitised at 2 ns/sample [Trigger]

12




The NILE facility at Rutherford Appleton Laboratory
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e D-D and D-T fusion generators
installed in “shielding bunker”

e Collimators & additional
shielding provide clean beam
through OTPC

e D-T collimator 1 m, D-D 30 cm

: - 13
Experiment setup with D-T generator



Experiment installation in the NILE bunker
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Lead shield : 10 cm
Borated HDPE shield : 20 cm
Collimator HDPE+ lead : 30 cm long




First Science Run (Summary)

The First Science run took place from the 17" of
July to the 3 of August.

Data taken using D-D neutron generator, with a
lower NR rate than designed, is recorded
continuously during 10 hour long shifts, and
includes significant fraction of empty frames.

Frames taken with 20 ms exposure time. Longer
than planned due to problems with camera’s Linux
firmware.

Data taking interspersed with regular calibration
runs (*°Fe) to monitor the gain of the detector.

Voltage across GEMs increased by a small amount
each day to keep constant gain.

Total gain in GEMs tuned to a threshold required to
see fully resolved *°Fe peak.

Average spark rate ~ 7/min due to high dynamic
range the detector operates at.

Half of the data is blinded.

16.75

Cumulative recorded DD frames
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Examples of events (Single Nuclear Recoil)
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Examples of events (Migdal-like event)
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Examples of events (Migdal-like event)
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Examples of events (Migdal-like event)
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Examples of events (Migdal-like event)
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Examples of events (Migdal-like event)
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Improvements for the Second Science Run (SSR)

Fixed communication between DAQ PC and camera -
use CoaXPress instead of UBS decreasing exposure
time from 20 ms to 8.3 ms - less chance for coincidence
events.

Fixed missing bonded connection to central ITO strips.
Use FPGA to record timing information of every trigger
also within 3 ms of DAQ dead time.

New GEMs w/o metallisation around mounting holes
Use of mask limiting events detected by the ITO strips
without being seen by the camera

At the later stage of the SSR - use of a new collimator

increasing NR rate x3.

22



Summary

e Several experiments using different detection techniques search for the Migdal effect.

e Effectis investigated in light atoms like C and F as well as in heavier Ar and Xe.

e We have first results from experiments using LXe (LZ and experiment at LLNL).

e Early next year we should hear results from MIRACLUE using high pressure TPC filled
with gaseous Xe at high pressure.

e The MIGDAL experiment’s first science run took place with DD neutron source at the NILE
facility at RAL. The detector performed well through the weeks of operation with highly
ionising NRs.

e Analysis of recorded data underway with 50% of recorded data kept blinded.

e Second Science Run planned for January.
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