

Environmentally-friendly gas mixtures for gaseous tracking and timing detectors

Marnik Metting van Rijn First Quarter Meeting 31st March 2023

ETHzürich Christian Franck, Dario Stocco and Marnik Metting van Rijn

Piet Verwilligen, Roberto Guida, Rob Veenhof, Beatrice Mandelli and Stephen Biagi

Figure: Work solely performed at ETH Zurich is indicated in blue whilst collaborative work is in blue and orange.

Figure: Marnik Metting van Rijn

Figure: Dario Stocco

	Year 1			Year 2			Year 3			Year 4				responsible			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q.3	Q4	Q1	Q2	Q.3	Q4	
Swarm Parameter Measurements																	DS1
Cross Section Fitting						M1				M3			•	M4		MS	DS1, SB
Mixture optimization																	DS2, RV, PV
Experimental confirmation of novel gas mixtures									M2							M6	DS2, RG, BM

Figure: Anticipated timeline of project representing the division in work.

Research goal

Determine the vibrational-excitation, momentum-transfer, ionisation, attachment and integral cross sections for several promising candidate gases in gaseous tracking and timing detectors.

Experimental results

-0.02 -0.02 -0.04 -0.06 -0.06 -0.06 -0.06 -0.08 -0.06 -0.08 -0.08 -0.06 -0.08 -0.08 -0.06 -0.08 -0.04 -0.02 -0.04 -0.04 -0.02 -0.04 -0

Figure: Normalized mobility as a function of reduced electric field in a 2% Argon HFO1234ze mixture. Errorbars within marker.

Figure: Rate coefficient as a function of reduced electric field in a 2~% Argon HFO1234ze mixture. Errorbars within marker.

Diluted HFO1234ze argon measurement performed at 0.5~%, 1~%, 2~% and 5~% mixtures.

Table: IR-spectra attained vibrational modes [1].

C-C	$110\mathrm{meV}$
CF_3	$137\mathrm{meV}$
C-F	$144\mathrm{meV}$
CF₃	$166\mathrm{meV}$
C=C	$211\mathrm{meV}$
C-H	$386\mathrm{meV}$

Figure: Chemical structure of tetrafluorpropene.

Table: Dipole moments in HFO1234ze [2] and H_2O [3].

H ₂ O	1.86D
HFO1234ze	1.13D
Ratio	0.61

ETH zü

• Measurements set physical boundaries

Figure: Excitations motivated by infrared measurements.

Scaled elastic line of water vapour [4] and divided by a factor of three. Vibrational excitation are modelled with

• 0.144 eV (C-F) and $1 \times 10^{-20} \text{ m}^2$ and

•
$$0.386 \text{ eV}$$
 (C-H) and $4 \times 10^{-20} \text{ m}^2$.

Simulation

Figure: Normalized mobility as function of reduced electric field. Errorbars are fixed to 5 %. Underlying cross section set shown in upper slide and was propagated with Bolsig [5].

- Performed diluted HFO1234ze measurements
- Determined preliminary set for elastic and vibrational cross sections

Table: Projected milestones concerning HFO1234ze

April 2023	Pure HFO1234ze swarm measurements
Mai 2023	Vibrational resonance and low energy attachment
June 2023	Electronic excitations
August 2023	Self consistent set of cross section for HFO1234ze

- Training structure for Dario
- Intensive course at CERN in cross sections provided by Stephen
- List of promising gases
- Lab tour at ETH/CERN

References

- Jan Schwabedissen, Timo Glodde, Yury V. Vishnevskiy, Hans-Georg Stammler, Lukas Flierl, Andreas J. Kornath, and Norbert W. Mitzel.
 Structures and properties of <i>rans</i>-1,3,3,3-tetrafluoro- propene (hfo-1234ze) and 2,3,3,3-tetrafluoropropene (hfo-1234yf) refrigerants. *ChemistryOpen*, 9:921–928, 9 2020.
- [2] Catherine C. Sampson, Mobolaji Kamson, Matthew G. Hopkins, Paul L. Stanwix, and Eric F. May.
 - Dielectric permittivity, polarizability and dipole moment of refrigerants r1234ze(e) and r1234yf determined using a microwave re-entrant cavity resonator.

The Journal of Chemical Thermodynamics, 128:148–158, 1 2019.

[3] Shelley L. Shostak, William L. Ebenstein, and J. S. Muenter.

The dipole moment of water. i. dipole moments and hyperfine properties of h ₂ o and hdo in the ground and excited vibrational states. *The Journal of Chemical Physics*, 94:5875–5882, 5 1991.

[4] Yukikazu Itikawa and Nigel Mason.

Cross sections for electron collisions with water molecules. Journal of Physical and Chemical Reference Data, 34:1–22, 3 2005.

[5] G J M Hagelaar and L C Pitchford.

Solving the boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models.

Plasma Sources Science and Technology, 14:722–733, 11 2005.

Marnik Metting van Rijn PhD student marnikm@ethz.ch

ETH Zurich High Voltage Laboratory ETL H34 Physikstrasse 3 8092 Zurich, Switzerland https://hvl.ee.ethz.ch

(a) 5 %

Figure: Cross section of water vapour taken from garfield.

Figure: Total elastic cross section (green) [4].

C: Pulsed Townsend experiment

Figure: Pulsed Townsend experiment at the High Voltage Laboratory (ETH Zurich). [?]

Rate	Bulk velocity	Bulk diffusion
$ u_{ m eff}$	W_b	D_b

Table: Attained electron transport coefficients

- Allows study of arbitrary gas mixtures
- Highly automated experimental set up

