
Emittance optimization for SUPERB and experimental results from DIAMOND

Simone Liuzzo

TIARA Meeting CERN Ginevra, 23 feb 2011

Diamond aerial view

Diamond is a third generation light source open for users since January 2007 100 MeV LINAC; 3 GeV Booster; 3 GeV storage ring 2.7 nm emittance – 300 mA – 18 beamlines in operation (10 in-vacuum small gap IDs)

Courtesy R. Bartolini

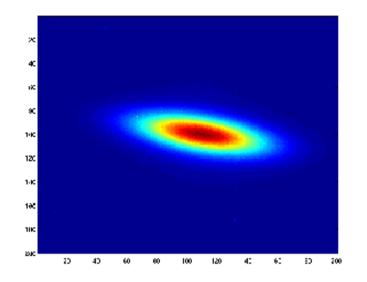
Courtesy R. Bartolini

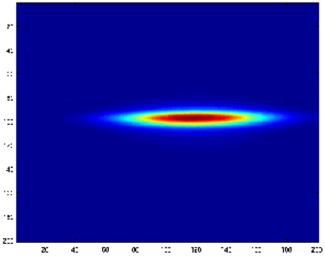
Measured emittances

Coupling without skew quadrupoles off K = 0.9%

(at the pinhole location; numerical simulation gave an average emittance coupling $1.5\% \pm 1.0\%$)

Emittance [2.78 - 2.74] (2.75) nm


```
Energy spread [1.1e-3 - 1.0-e3] (1.0e-3)
```


After coupling correction with LOCO (2*3 iterations) 1st correction K = 0.15%

2nd correction K = 0.08%

V beam size at source point 6 µm

Emittance coupling $0.08\% \rightarrow V$ emittance 2.2 pm Variation of less than 20% over different measurements

	V12		V13		V14	
Units	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (e+)	LER (e-)
cm ⁻² s ⁻¹	1.00E+36		1.00E+36		1.01E+36	
GeV	6.7	4.18	6.7	4.18	6.7	4.18
m	1258.4		1263.5		1159.5	
mrad	66		66		66	
cm	2.6	3.2	2.6	3.2	2.6	3.2
cm	0.03	0.02	0.03	0.02	0.03	0.02
%	0.25	0.25	0.25	0.25	0.25	0.25
nm	1.97	1.82	2.09	1.93	1.90	1.82
nm	2.07	2.37	2.19	2.51	2.00	2.37
pm	5.17	5.92	5.49	6.27	4.99	5.92
mm	4.69	4.29	4.8	4.4	4.53	4.29
mm	5	5	5	5	5	5
mA	1892	2447	1930	2470	1892	2447
#	2		2		2	
	cm ⁻² s ⁻¹ GeV m mrad cm cm cm cm cm m m m m nm nm nm pm mm mm mm mm	Units HER (e+) cm ⁻² s ⁻¹ 1.00E GeV 6.7 m 1258 mrad 66 cm 2.6 cm 0.03 % 0.25 nm 1.97 nm 2.07 pm 5.17 mm 4.69 mm 5 mA 1892	Units HER (e+) LER (e-) cm² s⁻¹ 1.00E+36 GeV 6.7 4.18 m 1258.4 mrad 66 cm 2.6 3.2 cm 0.03 0.02 % 0.25 0.25 nm 1.97 1.82 nm 2.07 2.37 pm 5.17 5.92 mm 4.69 4.29 mm 5 5 mA 1892 2447	Units HER (e+) LER (e-) HER (e+) cm ⁻² s ⁻¹ 1.00E+36 1.00E GeV 6.7 4.18 6.7 m 1258.4 1263 mrad 66 66 cm 2.6 3.2 2.6 cm 0.03 0.02 0.03 % 0.25 0.25 0.25 nm 1.97 1.82 2.09 nm 2.07 2.37 2.19 pm 5.17 5.92 5.49 mm 4.69 4.29 4.8 mm 5 5 5 mA 1892 2447 1930	Units HER (e+) LER (e-) HER (e+) LER (e-) cm² s⁻¹ 1.00E+36 1.00E+36 1.00E+36 GeV 6.7 4.18 6.7 4.18 m 1258.4 1263.5 66 cm 2.6 3.2 2.6 3.2 cm 0.03 0.02 0.03 0.02 % 0.25 0.25 0.25 0.25 nm 1.97 1.82 2.09 1.93 nm 2.07 2.37 2.19 2.51 pm 5.17 5.92 5.49 6.27 mm 4.69 4.29 4.8 4.4 mm 5 5 5 5 mA 1892 2447 1930 2470	Units HER (e+) LER (e-) HER (e+) LER (e-) HER (e+) cm ⁻² s ⁻¹ 1.00E+36 1.00E+36 1.01E 1.01E GeV 6.7 4.18 6.7 4.18 6.7 m 1258.4 1263.5 1159 mrad 66 66 66 66 cm 2.6 3.2 2.6 3.2 2.6 cm 0.03 0.02 0.03 0.02 0.03 % 0.25 0.25 0.25 0.25 0.25 nm 1.97 1.82 2.09 1.93 1.90 nm 2.07 2.37 2.19 2.51 2.00 pm 5.17 5.92 5.49 6.27 4.99 mm 4.69 4.29 4.8 4.4 4.53 mm 5 5 5 5 5 mA 1892 2447 1930 2470 1892

Tests in progress at **Diamond Light Source** for the new correction schemes suggested for SuperB in order to achieve the desired vertical emittances.

Short term goal: to compare with LOCO Long term goal: reduce V emittance below 2.2 pm

Response matrix technique: Orbit Steering

Orbit Response Matrix M is defined as:

$$\vec{y} = M\vec{\theta}$$

$$M_{i,j} = \frac{\Delta y_i}{\Delta \theta_j}$$

Y_i is the vertical orbit measured at BPM & Θ_j is the corrector angle.

$$\vec{y} - M\vec{\theta} = 0$$

Pseudo Inversion with SVD of the matrix M provides a set of correctors Θ that sets to zero all monitor readings.

$$\vec{\theta} = SVD(M)^{-1}\vec{y}$$

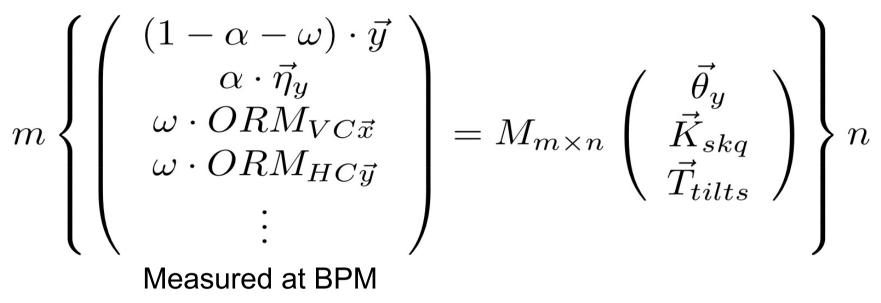
Same may be done in the horizontal plane

Response matrix technique: Dispersions Free Steering

Dispersion Free Steering is as orbit free steering but:

$$\begin{pmatrix} (1-\alpha)\vec{y} \\ \alpha\vec{\eta} \end{pmatrix} = \begin{pmatrix} (1-\alpha)M_{\vec{y}} \\ \alpha M_{\vec{\eta}} \end{pmatrix} \vec{\theta}$$

Y is the vertical orbit measured at bpm, Θ is the corrector angle, η the vertical dispersion as measured at the bpm, α is a relative weight.


Again, pseudo Inversion with SVD of the matrix M provides a set of correctors Θ that sets to zero simultaneously orbit and dispersion.

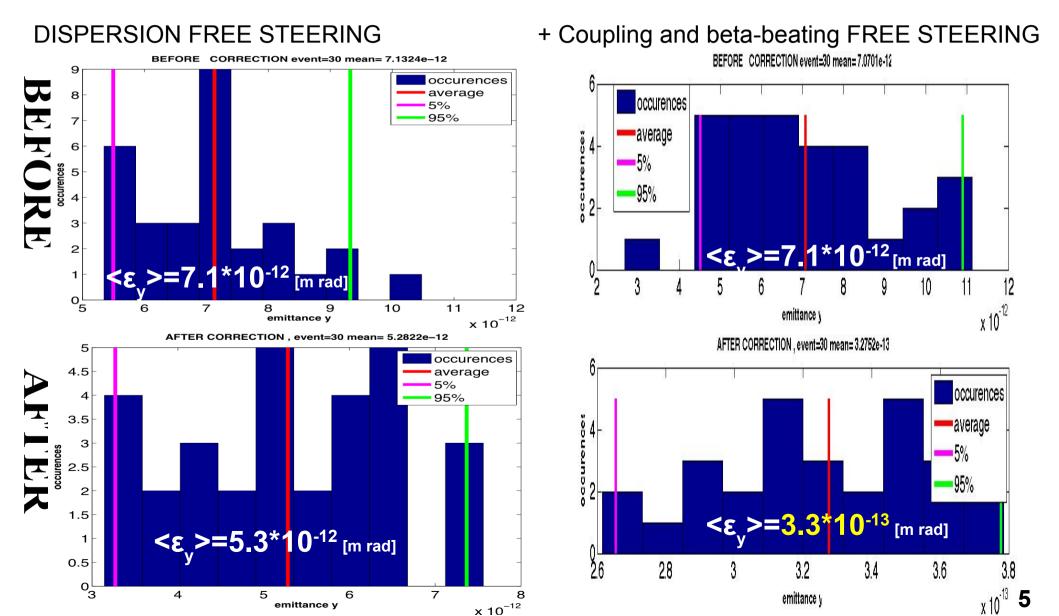
Same may be done in the horizontal plane, considering the non zero horizontal dispersion in solving the system.

New correction scheme:

Orbit and Dispersion Free Steering + Coupling and Beta-Beating Free Steering

+ 2 (or more) columns of the off diagonal Orbit Response Matrix, being the vertical orbit generated by a Horizontal correctors (HC) and vice versa.

+ Skew quadrupole gradients may be added as correctors.

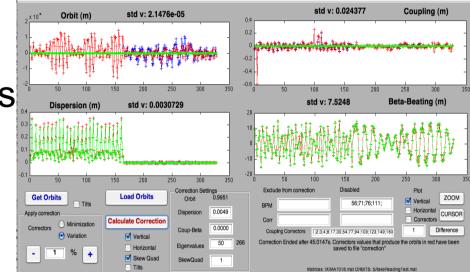

- + Tilts may be detected from dispersion and coupling vectors measurements adding a diagonal matrix to the system.
- + ALL MATRICES ARE CALCULATED FROM THE MODEL. FAST!

Same is done in horizontal plane with a different matrix sensible to the effect of β -beating (HC x orbit)

Simulations On Diamond Lattice

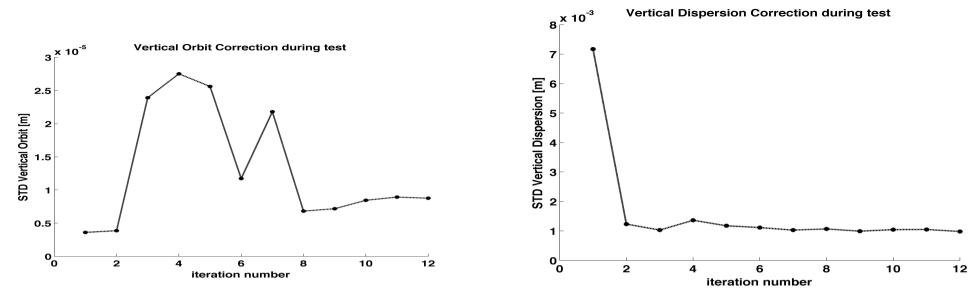
70µm rms horizontal misalignment Quadrupoles and Sextupoles 40µm rms vertical misalignment Quadrupoles and Sextupoles 50 µm rms vertical and horizontal Monitor offsets

Vertical Emittance [m rad]

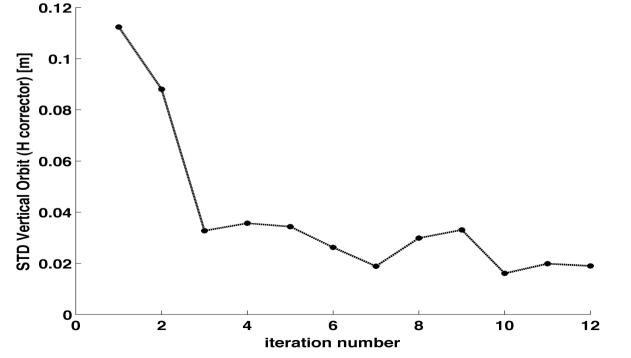


TESTS at Diamond Light Source (UK)

Matrices

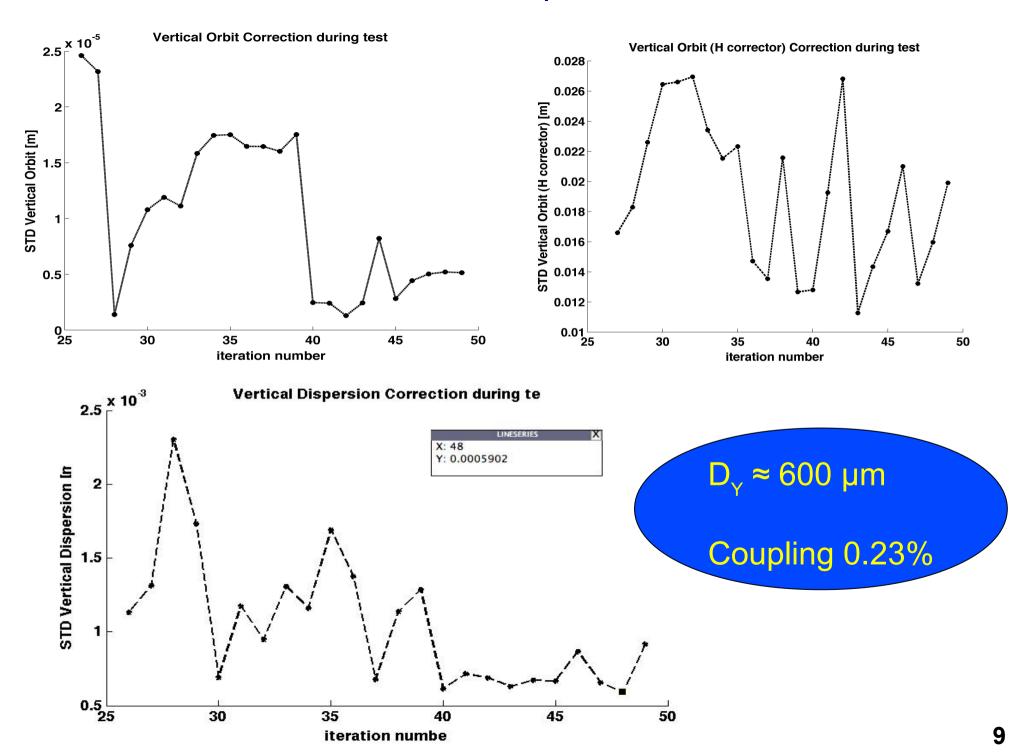

Tested:

- CFS using vertical steerers
- CFS using skew quadrupoles
- Simultaneous Correction with skew quadrupoles and vertical correctors
- Multiple "coupling vectors"



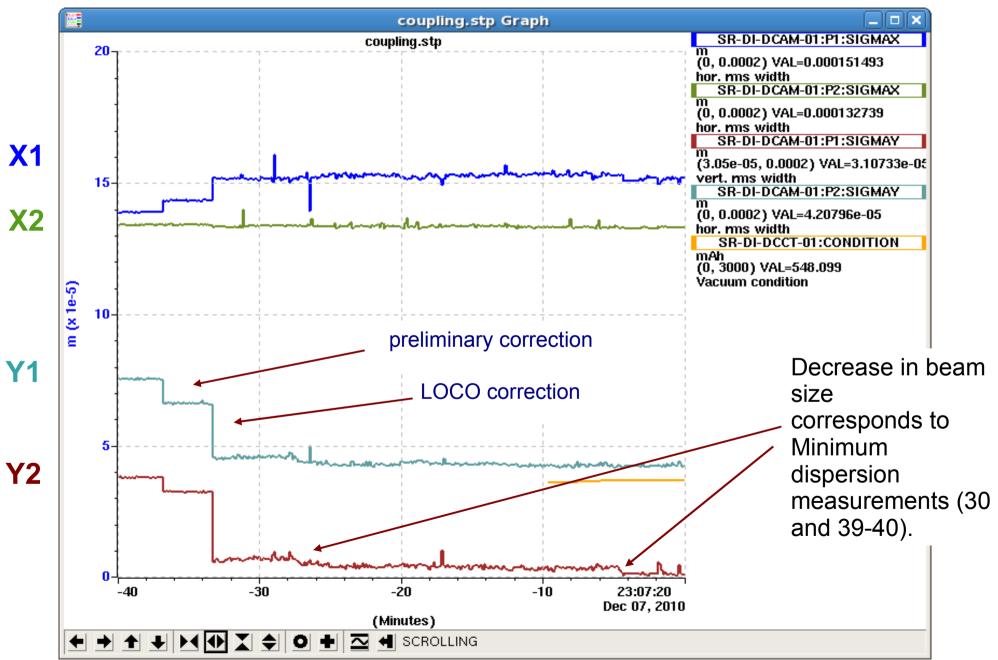
Monitor tilts (previously measured by LOCO) are taken into account in all measurements.

CFS Correction with vertical correctors

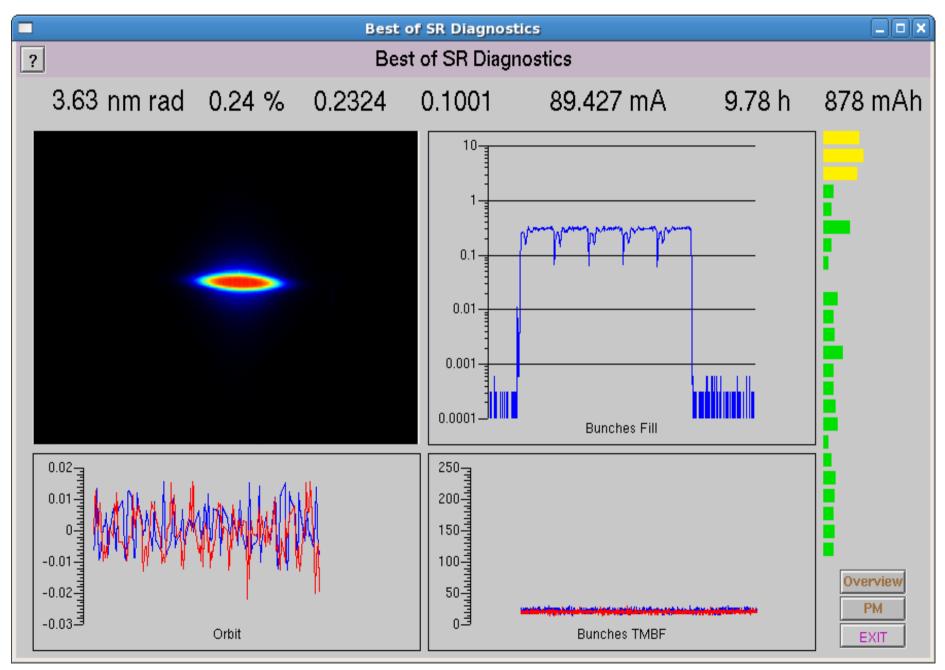


Correction reiteration converges first for dispersion then for coupling and for orbit.

1 mm rms vertical dispersion 10 µm rms vertical orbit


0.24% coupling measured At end of reiterations

CFS Correction with Skew Quadrupoles



Beam sizes at the two pinhole cameras

During correction with skew quadrupoles

10 µm orbit and 0.24% coupling.

H Emittance measurement not ok due to change in optics

StripTool Graph Window _||0||X SR-DI-EMIT-01:P2:SIGMAX untitled um (0, 55.2) VAL=47.1024 30 Beam sigma along horizontal axis SR-DI-EMIT-01:P2:SIGMAY um Starting (0, 32.7) VAL=12.0566 Beam sigma along vertical axis SR-DI-EMIT-01:P1:SIGMAY conditions um (0, 42.1) VAL=12.1006 V size at Beam sigma along vertical axis SR-DI-EMIT-01:P1:SIGMAX pinholes um (0, 64.4) VAL=55.5234 Beam sigma along horizontal axis 25 SR-DI-EMIT-01:EMITTANCE nm rad (0, 3.56) VAL=2.68644 Émittance emittance SR-DI-EMIT-01:COUPLING corrections (0, 2.2) VAL=0.241156 Coupling SR-DI-DCCT-01:LIFETIME Alle Mangalender (15, 30.659) VAL=20.8785 Best lifetime calculation 20 Best Unpolarise coupling d beam -correction 15--100 -50 01:44:07 K=0.23 Feb 09, 2011 (Minutes) O + ☑ ← SCROLLING

8 feb 2011- test with vertical and skew simultaneous correction and 10 correctors.

Conclusions

Vertical correction or Skew Quadrupoles correction using Coupling Free Steering provide 0.23%-0.24% emittance coupling and rms vertical Dispersion of 600 µm - 1mm after few reiterations.

Also simultaneous correction with skew quadrupole and vertical correctors have realized the same parameters.

Comparison with LOCO has been performed a few hours ago.

NEXT STEPS

- Test horizontal correction (also beta-beating constrained)
- Try to better exploit coupling correction. Simulation discrepancy.