

Insulation Vacuum Instrumentation Scheme, System Tests and Commissioning

J. Perez Espinos on behalf of WP12, with contributions of W. Maan and N. Chatzigeorgiou

Outline

- HL-LHC insulation vacuum scope;
- Overview of the insulation vacuum and its instrumentation layout;
- Variations of the HL-LHC IT String with respect to the tunnel baseline;
- Installation, testing and commissioning;
- Interlocking methods and communication with other systems.

HL-LHC insulation vacuum

LHC insulation vacuum instrumentation (LSS L1 schematics example)

- He relief devices → no controls and no services required
- Pump-out ports → no fix controls, but general compressed air, power supply and Profibus connection are required
 - Controls integrated in the mobile pumping groups
- Pumping groups and gauges → controls and services (compressed air and power supply non-operational functionalities) are required in the machine

Pumping groups and gauge groupings

- Pumping groups: valves + primary pump + turbo pump + fittings and vacuum connections
 - No active electronics present in the vicinity of the pumping groups;
 - Turbo controller deported to non-irradiated areas ⇒ long cable pulling required;
 - Crate available for local operation (close to pumping group);
- Gauge groupings: isolation valve + Penning gauge (E-07 E-02 mbar) + Pirani gauge (E-02 - 1 mbar) + piezo-resistive gauge (1 - 2000 mbar)
 - No active electronics present in the vicinity of the gauges;
 - Gauge controllers installed in non-irradiated areas.

Vacuum Control System schematics

To be updated for HL-LHC, following same approach as in LHC

IV pumping group control architecture

Overview of the insulation vacuum and its instrumentation layout

LHC vs HL-LHC

LHC		VACUUM BARRIER (*)	PUMPING GROUP (**)	GAUGE GROUPING	SAFETY VALVES	HL-LHC		VACUUM BARRIER (*)	PUMPING GROUP (**)	GAUGE GROUPING	SAFETY VALVES
						Q1					FP200
Q1	 A1xx.M				FP200	Q2A	A1xx.M		1	1	SV200
Q2			1	1	SV200	Q2B		1	1		SV200
Q3			1		SV200	Q3			1		SV200
DFX	A1XX.IVI	1			SV65	СР		1	1		SV200
						D1		1	1		SV200
						DCM		1	1		SV200
						DFX	Ayy.D	1+1+1	1+1	1	FP200
						DSLx+DFHX	Byy.D	1	1+1	1	4xSV90
						DSLx+DFHN	Cyy.D	1	1+1	1	4xSV90
		1			2xSV160	DFM	Dyy.D	1+1+1	1+1	1	FP200
D2						D2	A4xx.M	1	1	1	SV200
Q4	A4xx.M					CC#1	A.??xx.A	1	1+1	1	FP160
		1	1	1	SV160+FP160+SV90	CC#2	B.??xx.A	1	1+1	1	FP160
						Q4	B4xx.M	1	1	1	SV160+FP160+SV90
			!			1		'			
Q5	A5xx.M	1	1	1	2xSV160+SV90	Q5	A5xx.M	1	1	1	2xSV160+SV90
		•		l .		1	4			<u></u>	
Q6	A6xx.M	1	1	1	2xSV160+SV90	Q6	A6xx.M	1	1	1	2xSV160+SV90
DFBL		1	1		SV200+SV100	DFBL+DSLx	1	1	1		SV200+SV100
				<u>I</u>			4				
lxx	lxx.Q	1	2	1	9xSV90			1	2*	1	6xSV90
			2		2xFP100	QRL	Ixx.Q		1		2xFP100
							1	1*	1	8xSV90	
						QXL	Jxx.Q		2		2xFP100
							Kxx.Q			1 (TDC)	
CERNI		7	7 - 3	5	24xSV + 4xFP			2+5+13	15 15	14	~ 39xSV + 8xFP
V.	-KIN A					-					

HL-LHC IT String vs tunnel baseline

3x DIFFERENCES:

- integration of a turbo mobile pumping group instead of a fix turbo pumping group at DFHX;
- adaptation to dedicated SQXL (2x SA PGs instead of 1x SA + 1x by-pass);
- combination of existing LHC type passive
 piezo gauge with new type passive piezo gauge (under test and qualification);
- Dedicated SCADA synoptic for IT string insulation vacuum monitoring and operation
- Turbo mobile pumping group to be visible and operational through SCADA, via Profibus connection
- Integration of new type passive piezo gauge will be possible when solution is qualified; solution is compatible with current controller and cabling infrastructure

Vacuum and mechanics Pre-assembly & leak test Commissioning **Tunnel installation** Local operation (PG board, isolation valve (pumping groups, (PG and pneumatic (PG functionality tests, HW block, gauge grouping, p/o gauges) connection, p/o port, gauge leak tests) port, He relief devices) grouping, He relief devices) Reception and Pre-assembly In-tunnel tests Commissioning prior tests and prior tests installation and check-outs **Hardware Reception Tunnel Hardware Pre-assembly** Service areas HW & SW **SCADA** Commissioning test Installation Installation & test Control chain updates (pumping groups, (Controllers, PLCs, Local (PG board, Local crates, (HW, cabling) (Rad-hard HW. test gauges, gauge crates, Local cabling) calibration, CRYO gauge measurements for cabling) alarms) calibration) **Controls**

Sequence to be Vacuum and mechanics roughly respected! Commissioning Pre-assembly & leak test **Tunnel installation** Local operation (PG board, isolation valve (PG functionality tests, HW (pumping groups, (PG and pneumatic block, gauge grouping, p/o gauges) connection, p/o port, gauge leak tests) port, He relief devices) grouping, He relief devices) Reception and Pre-assembly In-tunnel tests Commissioning and prior tes installation and check-outs prior tests Cable pulling by EN-EL should be completed at this step Service areas **Tunnel** re-assembly HW & SW **SCADA** Commissioning test Installation Installation & test Control chain updates (pumping groups, (Controllers, PLCs, Local (PG board, Local crates, (HW, cabling) (Rad-hard HW, test gauges, gauge crates, Local cabling) calibration, CRYO cabling) gauge measurements for alarms) calibration) **Controls**

Sequence to be Vacuum and mechanics roughly respected! Commissioning Pre-assembly & leak test Local operation **Tunnel installation** (PG board, isolation valve (pumping groups, (PG and pneumatic (PG functionality tests, HW block, gauge grouping, p/o gauges) connection, p/o port, gauge leak tests) port, He relief devices) grouping, He relief devices) Reception and Pre-assembly In-tunnel tests Commissioning and prior tests installation and check-outs prior tests **Hardware Reception Tunnel Hardware Pre-assembly** Service areas HW & SW SCADA Commissioning test Installation Installation & test Control chain updates (pumping groups, (Controllers, PLCs, Local (PG board, Local crates, (HW, cabling) (Rad-hard HW, test gauges, gauge crates, Local cabling) calibration, CRYO cabling) gauge measurements for alarms) calibration) **Controls**

System tests – local operation

- Vacuum and mechanics
 - Functionality cross-checked through pumpout and leak detection activities → Pumping group commissioning at local
- Controls
 - Control chain test, including cabling pulled by EN-EL
 - Updating of VacDB and SCADA → extraction and synchronization from the official Layout DB (that should be ready at this step);
 - Check-out widgets and visibility
 - Calibration of Pirani and piezoresistive gauges at local → to be made under vacuum!

Vacuum and mechanics

Pre-assembly & <u>leak</u> test

(PG board, isolation valve block, gauge grouping, p/o port, He relief devices)

Tunnel installation

(PG and pneumatic connection, p/o port, gauge grouping, He relief devices)

Local operation

(PG functionality tests, HW leak tests)

Commissioning

(pumping groups, gauges)

Reception and prior tests

Pre-assembly and prior tests

In-tunnel installation

In-tunnel tests and check-outs

Commissioning

Hardware Reception test

(Controllers, PLCs, Local crates, Local cabling)

Hardware Pre-assembly & test

(PG board, Local crates, gauge measurements for calibration)

Service areas Installation

(HW, cabling)

Tunnel Installation

(Rad-hard HW, cabling)

HW & SW

Control chain test

updates

Ι.

Commissioning

(pumping groups, gauges, gauge calibration, <u>CRYO</u> <u>alarms</u>)

Controls

Interlocking methods and communication with other systems

- IV gauges do not interlock IV pumping groups or any other vacuum instrumentation
 - Pumping group control system optimized to react against IV degradation
- Alarm signals are sent to CRG control system to protect cryomodules against IV degradation or loss
 - 2x types of vacuum gauges are used for the alarms: Pirani and piezo resistive gauges;
 - 2x types of alarms are provided depending on the pressure measurement and logics (VAC_OK and VAC_NLOST);
 - gauge signals are acquired by vacuum PLCs located in service areas;
 - vacuum PLCs provide normally open (NO) contacts to the cryogenics PLCs, which can be actuated according to the pressure thresholds given by:
 - Pirani and piezo resistive gauges installed on the magnets and QRL lines;
 - Pirani gauges installed on the RF cavities (pt. 4);
 - the contacts are connected through local cables to cryogenics PLCs
- Cryo alarms validation (EDMS #2378513) is a mandatory step to give the related cool-down permit (Operational Safety Procedure as per EDMS #1378499)
 - Same approach is retained for HL-LHC machine (TBC)
 - BE-RF has requested to supply piezo resistive gauges ⇒ Crab cavities to use same approach as magnets and QRL/QXL lines (TBC)
- Same logics has been agreed with CRG for the IT String

Thanks for your attention.

Spare slides

Reception and prior tests

- No reception tests are foreseen for <u>vacuum and</u> <u>mechanics</u> → necessary check-outs are made during pre-assembly and/or in-tunnel testing steps
 - All pre-assembly and/or in-tunnel testing procedures are well established and reliable;
 - All key suppliers are known and considered to be highly reliable;
 - In case of failure or malfunctioning, the systems are conceived to make easy and quick replacements.
- Reception tests are foreseen for all <u>controls</u> items
 - Electrical continuity tests and functionality tests according to pre-defined procedures.

Pre-assembly and prior tests

- Vacuum and mechanics
 - Leak tests of pre-assemblies (turbo pump blocks) and p/o ports are foreseen;
 - Functionality tests of isolation valves are foreseen to prevent venting during first in-tunnel tests;
 - Magnetic and functionality tests of p/o ports are foreseen;
 - Assembly and test of pumping group connection board
- Controls
 - Measurement of offset and gain to be done for each individual new type passive piezo-resistive gauge;
 - Assembly and test of pumping group connection board.

