

HL-LHC Magnet Circuit Instrumentation Day 2023

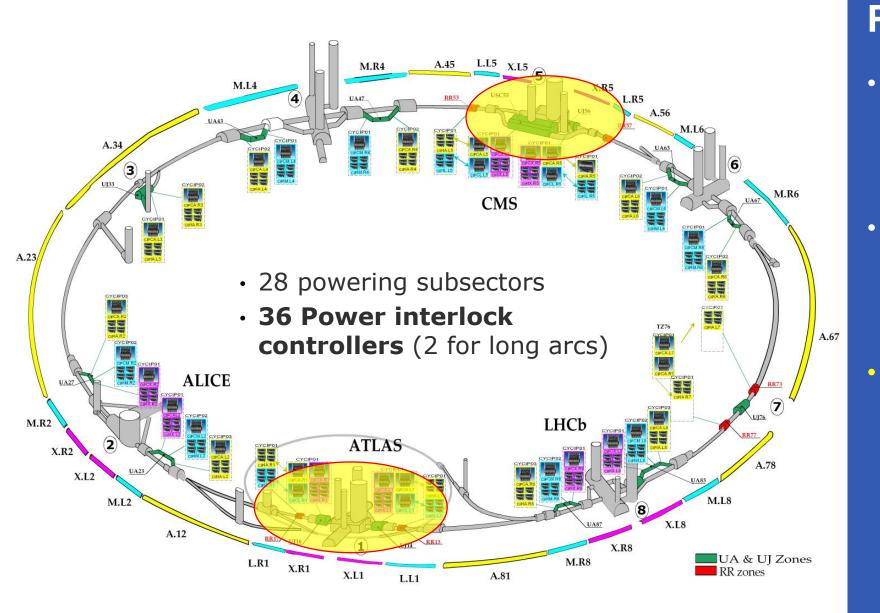
Power Interlock Controller Loops, System Tests and Commissioning

Alain Antoine (TE-MPE-MI)

20 June 2023

OUTLINE

- INTRODUCTION TO PIC
- HL-LHC SPECIFICATIONS for PIC
- SECOND GENERATION OF PIC
- IST AND COMMISSIONING
- CONCLUSIONS



Introduction

20.06.2023

HL-LHC Magnet Circuit Instrumentation Day 2023

PIC is designed to:

- Ensure the correct powering conditions for the superconducting magnet circuits of the LHC.
- Request a beam dump via the Beam Interlock System in case of failure of a connected circuits.
- A total of 12 out of 36 PICs are located at point 1 and 5.

HL-LHC Specifications for PIC

20.06.2023

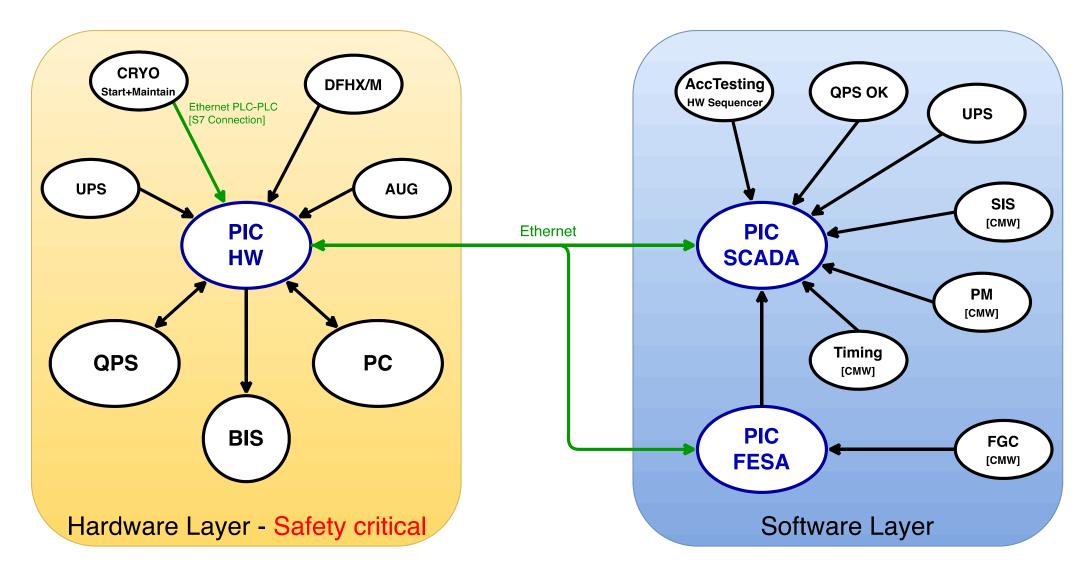
HL-LHC Magnet Circuit Instrumentation Day 2023

HL-LHC Specifications for PIC

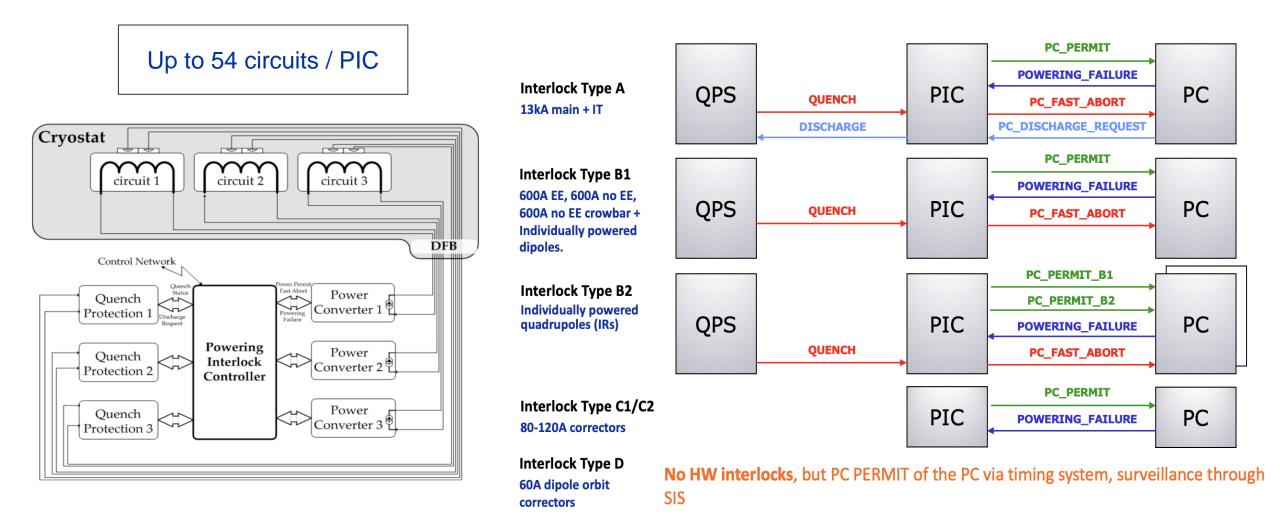
• Relocation of the 12 PICs of the sectors 1 and 5:

- from UL14, UL16 to UR15,
- from USC55, UL557 to UR55.
- Moving the electronics from the RRs to the URs to cope with the predicted increase in radiation levels induced by future HL-LHC beams.
- New configuration of the PICs of the inner triplet regions and matching sections in point 1 & 5.
- New interface at point 1 and 5 for HL-LHC circuits: DFHX/M thermal switches for the inner triplet and matching sections
- <u>Note:</u> PIC is ready for the 11T magnet integration

	Circuits for HiLumi	Magnet Type	Circuit Name	Number of circuits per IP side	Total number of circuits	l_nominal (7 TeV) [kA]	l_ultimate [kA]	L per circuit at nominal current [mH]	R per circuit [mΩ]	Comments or References		
	Triplet Q1, Q2a, Q2b, Q3	MQXFA / MQFXB	RQX	1	4 (IR1/5)	16,23	17,5	255,4	0,15	CERN-ACC-2017-0101; EDMS 1375861		
Inner Triplet	Trim Q1	-	RTQX1	1	4 (IR1/5)	2	2	69	1,35			
	Trim Q1a	-	RTQXA1	- 1	4 (IR1/5)	0,035	0,035	34,5	226,16			
	Trim Q3	-	RTQX3	- 1	4 (IR1/5)	2	2	69	1,2			
	Orbit correctors Q1/2 - Horizontal/Inner	MCBXFB	RCBXH[1,2]	2	8 (IR1/5)	1,74	1,864	58,4	2,37			
	Orbit correctors Q1/2 - Vertical/Outer	MCBXFB	RCBXV[1,2]	2	8 (IR1/5)	1,43	1,532	124,8	2,42			
	Orbit correctors Q3 - Horizontal/Inner	MCBXFA	RCBXH3	- 1	4 (IR1/5)	1,593	1,709	107.1	1,99			
erT	Orbit correctors Q3 - Vertical/Outer	MCBXFA	RCBXV3	- 1	4 (IR1/5)	1,34	1,441	232,3	1,98			
ŭ	Superferric, order 2	MQSXF	RQSX3	- 1	4 (IR1/5)	0,174	0,197	1530	14,31			
-	Superferric, order 3, normal and skew	MCSXF / MCSSXF	RCS[S]X3	2	8 (IR1/5)	0,099	0,112	213	54			
	Superferric, order 4, normal and skew	MCOXF / MCOSXF	RCO[S]X3	2	8 (IR1/5)	0,102	0,115	220	54			
	Superferric, order 5, normal and skew	MCDXF / MCDSXF	RCD[S]X3	2	8 (IR1/5)	0,092	0,106	120	54			
	Superferric, order 6	MCTXF	RCTX3	1	4 (IR1/5)	0,085	0,097	805	54			
	Superferric, order 6, skew	MCTSXF	RCTSX3	1	4 (IR1/5)	0,084	0,094	177	54			
D1	Separation dipole D1	MBXF	RD1	1	4 (IR1/5)	12,11	13,231	24,84	0,31			
2	Recombination dipole D2	MBRD	RD2	1	4 (IR1/5)	12,33	13,343	27,46	0,13			
D2	Orbit correctors D2	MCBRD	RCBRD[V,H]4	4	16 (IR1/5)	0,394	0,422	920	1,36			
8	Individually powered quad Q4 (4.5K)	MQY	Same Circuit Paramters									
ď	Orbit correctors Q4 (4.5K)	MCBY	Q4 Magnets									
5	Individually powered quad Q5 (4.5K)	MQML			ECR EDMS no. 2083813							
Q5	Orbit correctors Q5 (4.5K)	MCBC	Samo Circuit Paramter	for O5 Of and	ECK EDM510. 2083813							
QG	Individually powered quad Q6 (4.5K)	MQML	Same Circuit Paramters for Q5, Q6 and Correctors in IR1/5 as in the LHC									
σ	Orbit correctors Q6 (4.5K)	MCBC										
Q10	Individually powered quad Q10 (1.9K)	MQML	RQ10	2	8 (IR1/5)	5,39	5,83	21	0,4			
	Orbit correctors Q10 (1.9K)	MCB	RCB[V,H]10	2	8 (IR1/5)	0,055	0,06	6020	45,8	ECR EDMS no. 2796793		
	Lattice Sextupole (1.9K)	MS	RS[D,F][1,2]	2	8 (IR1/5)	0,55	0,6	432	7,5			
Q5	Individually powered quad Q5 (4.5K)	MQY	RQ5	2	4 (IR6)	3,61	3,9	74	0,4			
	Orbit correctors Q5 (4.5K)	MCBY	RCBY[V,H]5	2	4 (IR6)	0,088	0,1	5270	34,4			
	11T dipole, MBH	11T dipole, MBH	RB.A67-RB.A78	-	2 (IR7)	11,85	12,798	15734	1			
	Trim circuit	-	RTBH9	-	2 (IR7)	0.25	0.25	127 1	30.96			

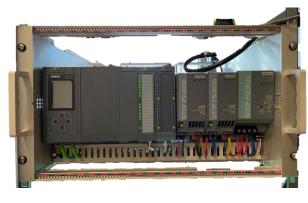

Second Generation of PIC (PICv2)

20.06.2023


HL-LHC Magnet Circuit Instrumentation Day 2023

Interface overview

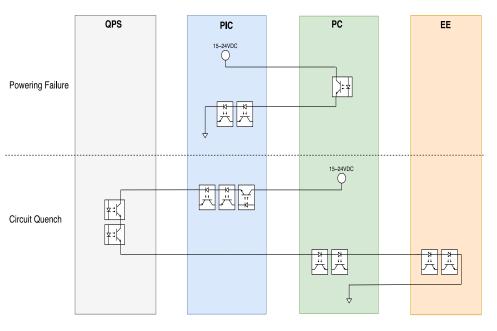
Circuit Interlock Types


Second Generation of PIC

• Why?

- Extend the lifespan of the PIC systems beyond HL-LHC by addressing the obsolescence of critical components in the system design.
- Assure compatibility with HL-LHC protection requirements.

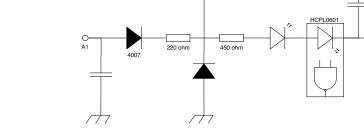
Design


- A purely industrial solution prototype based on PLC is available (HW) and will be installed at IT-STRING.
- Redesign of the PLC, WinCC software by BE-ICS using UNICOS is in progress and should be available by end of June.

							AR.				-	10:17:55 AM 19-Jun-2023
Cuit Bad BXH1 POWER PERMIT		uit	\	UACV1_UEI cut	EZ_M05_2	52 BATTERIE EI RCBXV2 READY CIRCUIT	ECTRIQUE	CITCUIT	SE II	I 1/183 T RCBXV3 READY CIRCUIT	4 Unack.	Circuit RQSX3 READY CIRCUIT
TUIT READY	RQX		RC	CREADY		Circuit RCSSX3 READY		Circuit RCOX3 READY		Circuit RCOSX3 READY CIRCUIT		Crcuit RCDX3 READY CIRCUIT
rcuit DSX3 READY	Circ RCT		O RC	rcuit TSX3 READY		Circuit	0	Circuit B2_B1_4 0 CRCUIT	0 0	Circuit B2_B1_5 0 CIRCUIT	6 0	Circuit B2_B1_6 0 CIRCUIT

Reliability studies Outcome

- Redundant reading of the loops.
- Beam dump request redundancy ensured by an extra CPU.
- Study ongoing
 - Possibility of reducing the number of CPUs per LHC sector to 2, to avoid the exchange of hardware signals between the PICs.

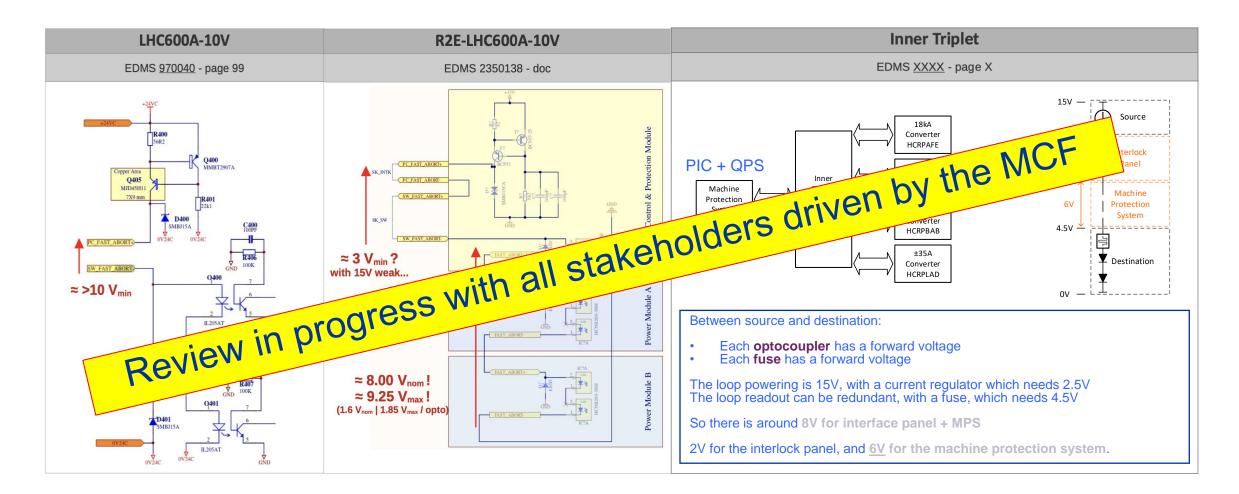


Current loops

- The new design of the PICv2 highlighted the potential risk of degradation of the integrity of the Quench loop induced by the voltage drops produced by all the systems.
- LHC specifications (EDMS 1001985) for current loops:
 - 10 mA < I < 20 mA and 15 V < V < 24 V
 - Maximum allowed voltage drop of each system is 2.5 V.

PICv2 Prototype

- Preliminary studies to select the components have focused on the reaction time (<75us for CLIQ integration) :
 - Opto-coupler to write on the loops: Finder 24 VDC.
 - Opto-coupler to read on the loops: Weidmüller MOS 12-28 VDC.
 - 2x 4.2 VDC optocoupler voltage drop is caused by internal protection against reverse current, over voltage and short circuit.
 - CLIQ is out of the picture: reaction time restrained to 10 ms -> wider opto-coupler choice.
- HW validated in MPE testbed 272 and in the PIC testbed:
 - Power Permit loop with FGC
 - Powering Failure loop with FGC
 - Quench loop with FGC and CLIQ (No EE)


4.4 Kohm

Finder

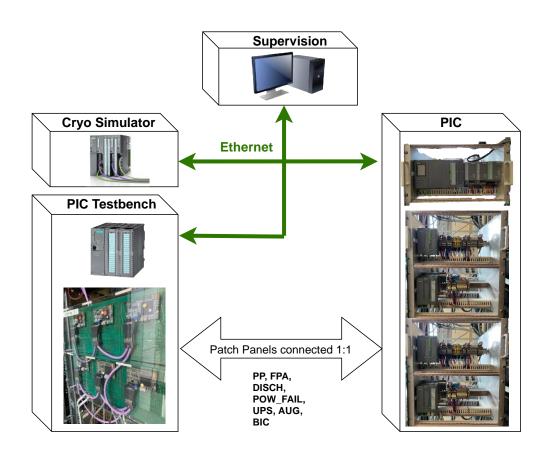
Weidmüller

Quench Loop: different cases...

Courtesy of Y. Thurel and B. Todd

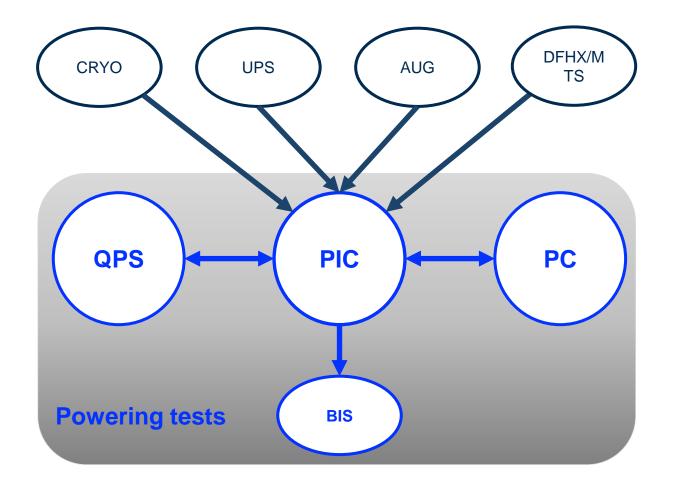
IST & HWC

20.06.2023


Reference Documents

- General Procedure for the Commissioning of the Electrical Circuits of a sector (Eng. Spec.)
 - EDMS 477145: <u>LHC-D-HCP-0001</u>
- Individual System Tests of the Powering Interlock Controller
 - EDMS 531823: LHC-CI-TP-0001
- MPS Aspects of the Power Interlock System Commissioning
 - EDMS 896390: <u>LHC-OP-MPS-0005</u>
- Interlock Tests of Powering Subsector Prior & After Connection of the Power Cables to DFB Leads
 - EDMS 519704: <u>LHC-D-HCP-0002</u>

Individual System Tests


- To validate the correct functioning of the PIC, including the supervision application in stand-alone mode.
- 2 steps:
 - Prior to the installation of a PIC in the LHC:
 - A **dedicated test system** is used to interface any existing PIC hardware configuration and to simulate all protection signals.
 - An automated procedure verifies the correct response of the powering interlock controller for all possible failure scenarios simulated with the test system (validation of PLC HW + SW).
 - In-situ (proposal to be tested at IT-STRING):
 - The PIC is entirely cabled but all systems are disconnected and replaced by dedicated "bouchon".

Hardware Commissioning

- 12 out of 36 PIC are to be tested for HL-LHC.
- Tests entirely carried out manually (with the concerned teams).
 - CRYO
 - Tests and validation from the CCC.
 - UPS
 - Validation in collaboration with EN/EL team which acts on the UPS in the tunnel.
 - AUG
 - Analysis of all events in the PIC history buffer.
 - DFHX/M Thermal switches.
 - Interface and configuration.
- Automated tests via AccTesting.
 - Powering tests.

Test Procedure in EDMS 519704.

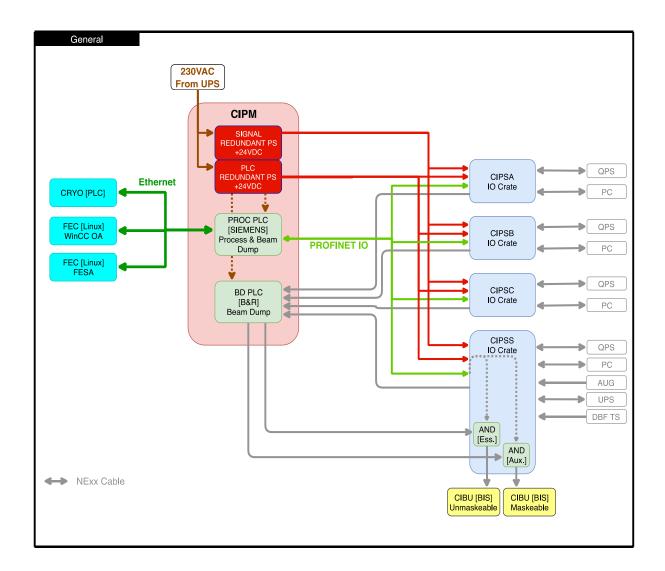
The aim is the commissioning of hardwired protection signals, transmitted via current loops in between the involved systems (PC_PERMIT, POW_FAIL, QUENCH, DISCHARGE_REQ, BIS).

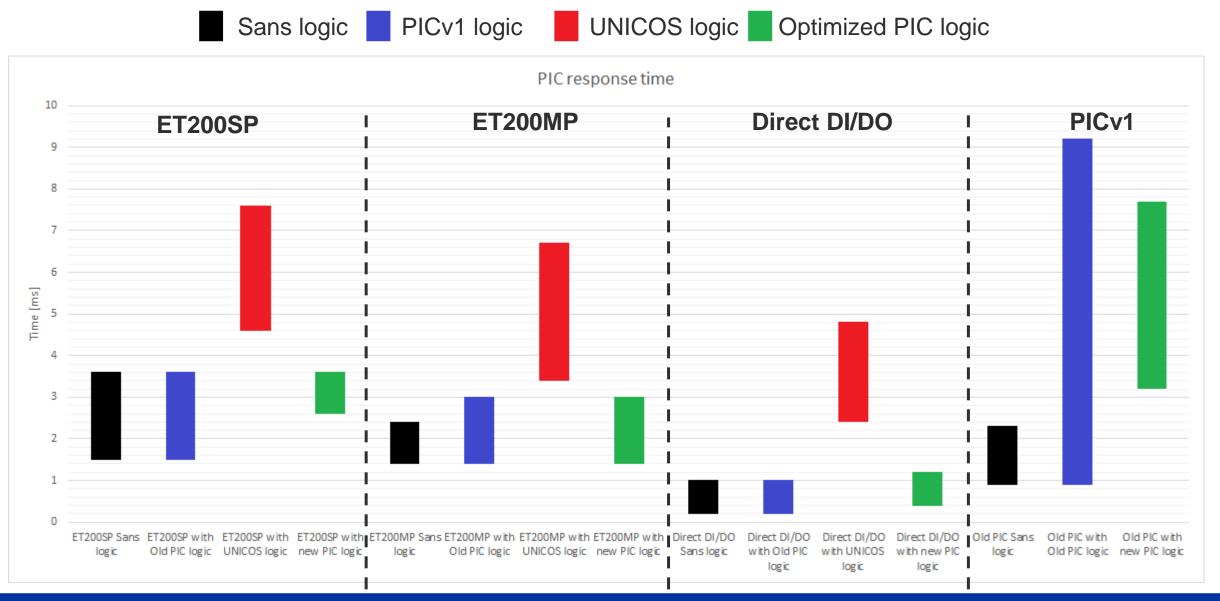
Test management with AccTesting (MPE-CB).

Powering Tests (2)

Test	Interlock Type	Circuit Type	PIC Signature		
PC_PERMIT	A, B1, B2, C	All	Not required		
POWER FAILURE	A(1)	RB	PIC Expert		
	A(2), B1, B2, C	Others	Automatic (eDSL)		
CIRCUIT QUENCH VIA QPS	A, B1	RB, RQD, RQF, RQX, IPD	PIC Expert		
	B1, B2	600A EE/noEE	Automatic (eDSL)		
FAST ABORT	A, B1	RB, RQD, RQF, RQX, IPD	PIC Expert		
VIA PIC	B1, B2	600A EE/noEE	Automatic (eDSL)		
DISCHARGE REQ VIA PIC	A	RB, RQD, RQF	PIC Expert		
PIC TO BIC	All	All	PIC Expert		

HL-LHC: 88 PIC tests / IP Side (+31 PIC to BIC tests).


- The PICv2 prototype is a full industrial solution that has been successfully tested in the MPE testbed and the Hardware is ready for IT-STRING.
- PLC configuration for LHC still to be defined.
- Review of the current loops specifications and voltage drop study with all stakeholder ongoing.
- The Second generation of PIC Software is currently under development by BE-ICS.
- PICv2 still to be integrated in AccTesting (ongoing).
- Very good understanding of the IST and HWC.

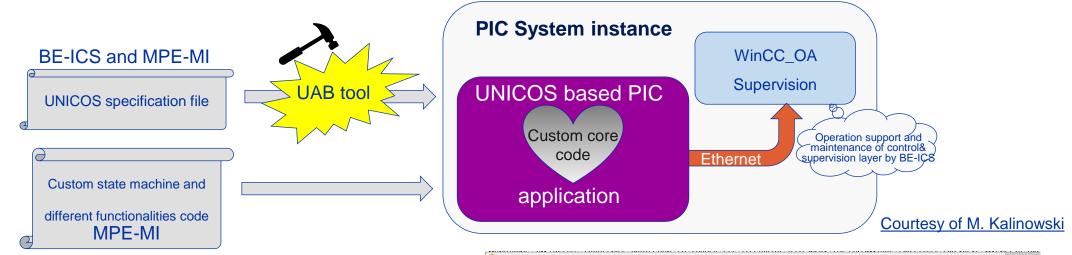

home.cern

Second Generation of PIC

PICv2 Industrial Solution – Response Time Results

PIC Software: Towards a Second Generation

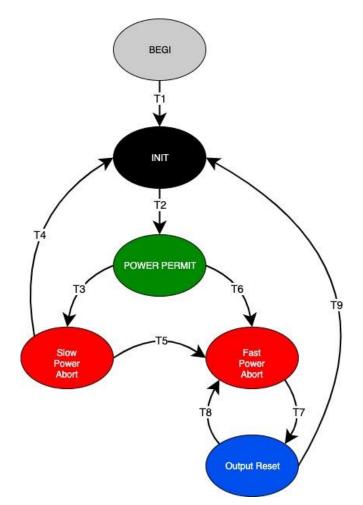
Original PLC software


- Tailor-made, written in STL language.
- Based on UNICOS TSPP protocol to communicate with WinCC OA (SCADA).
- Not compatible with the current Siemens S7-1500 series PLC (UNICOS communication protocol).
- A second generation of software is mandatory, keeping each system software generic throughout all instances.

Two possible solutions

PIC v2 – UNICOS software Prototype

 Fully UNICOS integrated PIC v2 software, is currently being developed by BE-ICS as a solution for IT STRING.



- Study ongoing:
 - Merging several PICs in a powering Subsector maintaining a reaction time < 10 ms (PLC cycle time + Interface).
 - AccTesting integration.

Interlocking Strategy

Foilure Tupe	PIC Action					
Failure Type	PIC ACTION					
Powering Failure	Slow Power Abort					
Quench	Fast Power Abort					
Discharge	Fast Power Abort					
Cryo	Slow Power Abort					
UPS	Slow Power Abort					
AUG	Slow Power Abort					
GPM	Fast Power Abort					
Operator	Slow Power Abort					
	Fast Power Abort					

- The Global Protection
 Mechanism (GPM) is designed
 to trigger a preventive discharge
 of magnet circuits in the vicinity
 of a main magnet that
 quenched, in order to reduce the
 likelihood of secondary
 quenches due to heat
 propagation.
- Each circuit is configured to activate or not the global protection mechanism (GPM).

