

Overview of the System Tests and Commissioning Plan for the HL-LHC IT String

Samer Yammine

HL-LHC Magnet Circuit Instrumentation Day 2023 2023-06-20

Contents

- Introduction
- Overview of the Individual Systems Tests (related to instrumentation)
- Hardware Commissioning Tests
- Control, Supervision and Analysis Software
- Conclusion

Introduction

SY 3

Scope of HL-LHC IT String Validation Program

The *scope* of the HL-LHC IT String is to represent, as best as reasonably achievable in a surface building, the various operation modes to STUDY and VALIDATE the COLLECTIVE **BEHAVIOUR** of the different systems of the HL-LHC's IT zone (magnets, magnet protection, cryogenics for the magnets and the superconducting link, magnet powering, vacuum, alignment, interconnections between magnets, and the superconducting link).

Reference of the HL-LHC IT String Scope EDMS no. 1693312

The HL-LHC IT String will deliver the first complete experience of installing and operating the HL-LHC IT zone

Drivers of the String Validation Program

Powering and Protection Scheme in the IT String

- Inner Triplet Circuit:
 - Rated 18 kA and 2 trims at 2 kA over Q1 and Q3 powered through the SC Link
 - 1x 35 A for K-mod on Q1a powered via local feeders on Q1
 - Protected by means of Quench Heaters, CLIQ and Cold Diodes
- RD1 circuit:
 - Individually Powered Dipole Circuit rated 14 kA
 - Protected by means of Quench Heaters
- RCBX Dipole Corrector Circuits:
 - 6 circuits for 3 nested magnets (V,H) rated at 2 kA
 - Protection by means of 150 m Ω Energy Extraction System
- High Order Correctors
 - Powered via conduction cooled cables/local powering
 - 8x 120 A circuits where magnets are self protected
 - 1x 200 A circuit protected via 1.4 Ω Energy Extraction

Overview of the Individual Systems Tests

SY 7

Tests for Warm Powering

Control, Signal and Power Cables IST

Water Cooling Network IST Electrical Distribution Network IST

2

Water Cooled Cables IST

LHC-XMS-OP-0002

3

Connection of the EES to Infrastructure

Connection of PCs and CDBs to Infrastructure

Connection of PIC to Infrastructure

4

HSE Inspection (Hydraulic and Electrical)

5

PC and CDBs IST

Energy Extraction IST

LHC-XMS-OP-0001 LHC-XMS-OP-0005

Short Circuit Tests (including PIC)

LHC-XMS-OP-0003

Short Circuit Tests in the HL-LHC IT String

- Short Circuit Connections in the IT String Test <u>LHC-XMS-OP-0003</u>
 - PIC, Water-Cooled Cables, Bus Bars, Power Converter and Energy Extraction System Validation with Relevant Instrumentation
 High Current Bus-bars

Commissioning of the Cryogenics without Magnets

Objectives (EDMS no. 2620402):

- Validate mechanical and thermal design (+ vacuum leak checks by TE-VSC)
 - Verify the operation and calibration of the instrumentation at room temperature & cold conditions
- Tune the control loops to reduce commissioning time with magnets

Courtesy of A. Perin

QC during Cold Powering and Magnet Installation

Electrical Quality Assurance (ElQA) tests are foreseen as defined in <u>LHC-XMS-OP-0004</u> to check di-electrical withstand and continuity in connections (polarities, instrumentation, etc.) of cold powering and magnets during the interconnection phase.

Instrumentation wires routed at room temperature are also di-electrically tests. (See talk of Mateusz).

HWC of the HL-LHC IT String

SY

MP3 from String Validation Program to HL-LHC HWC

Pumping and Global Leak Tests for the Magnet and Cold Powering Vacuum	5 w
Cryogenics Pressure and Leak Tests and Insulation Vacuum Check	2 w
EIQA and Alignment Tests at Room Temperature	2 w

14

Cool-down	
Current Leads Heating System checks	2 w
Cryogenics Instrumentation checks and control tuning	

Static Cryogenics Measurements and Controls Tuning	4 w
ElQA and Alignment Tests at Nominal Conditions	1 w
Protection System IST and PIC1 Tests	3 w
HWC Powering Tests for 120A + 200A Circuits (I _{nom})	2 w
HWC Powering Tests for RCBX -2 kA- Circuits (I _{nom})	3 w
HWC Powering Tests for RD1 -14 kA- Circuit (I _{nom})	2 w
HWC Powering Tests for RQX -18 kA- Circuit (I _{nom})	11 w
Powering of Grouped Circuits	1 w

Bayonet Heat Exchanger Test	1 w
Cross Talk Studies	4 w
Operation Powering Cycles and Noise Measurements	3 w
Flux Jump Measurements	3 w
Powering Cycle Endurance Test	3 w

Powering of Grouped Circuits

Final ElOA Tests at Nominal Conditions

1 w

Focus on 2 kA Corrector Circuit Powering Tests

LHC 600 A (Reference)	Step for HL- LHC IT String	Test Description	
PCC	PCC	Power Converter Configuration	
PIC2	PIC2	PIC tests	
PCS	PLI1.s1	Splice Mapping @ 500 A	
	PLI1.b1	EE from QDS @ 500 A	
	PLI1.d1	Powering Failure @ 500 A	
	PLI1.e1	SPA @ 500 A	
PLI3.b1	PLI2.s1	Splice Mapping @ 1 kA	
	PLI2.c1	FPA @ 1 kA	
	PLI2.d1	Powering Failure @ 1 kA	
	PLI2.e1	SPA @ 1 kA	
PNO.d3	PNO.d1	Training and Powering Failure	
PNO.b1	PNO.b1	EE from QDS @ ±I_PNO	
PNO.a3	PNO.a1	Bipolar Cycle @ ±I_PNO	
PNO.x1	PNO.x3	Combined Powering	

Example: Steps for 2 kA Circuits

Powering Tests and Acceptance Criteria for the 2 kA RCBX Circuits

LHC-XMS-OP-0006, EDMS no. 2771111

Case of the the HL-LHC Inner Triplets

Step	Test Description	Main Current(kA)	Trim Q1 Current(kA)	Trim Q3 Current(kA)
PLI3.fl	QPS Provoked Quench	10	-2	-2
PLI3.f2	QPS Provoked Quench	10	2	2
PLI3.f3	QPS Provoked Quench	10	-2	2
PLI3.f4	QPS Provoked Quench	10	0	0
PLI3.g1	Manual Triggering of Q2b CLIQ Unit	10	0	0
PLI4.fl	QPS Provoked Quench	13	-2	-2
PLI4.f2	QPS Provoked Quench	13	2	2
PLI4.f3	QPS Provoked Quench	13	2	-2
PLI4.f4	QPS Provoked Quench	13	0	0
PLI4.g1	Manual Triggering of Q1a CLIQ Unit	13	0	0
PNO.a1	Current Cycle	16.23	0	0
PNO.d1	Powering Failure	16.23	-2	-2
PNO.fl	QPS Provoked Quench	16.23	-2	-2

Test at 10 kA, 13 kA and Nominal Current (4/4)

Step	Test Description	Number of Tests
IST.QPS	Individual CLIQ Discharge at 0 A	6
IST.QPS	Combined CLIQ Discharge at 0 A	1
IST.QPS	Combined QHs discharge at 0A, 300V	1
IST.QPS	Combined QHs discharge at 0A, 900V	1
IST.OPS	Combined CLIQ + QHs discharge at 0A	1

Test at 0 A (1/4)

Step	Test Description	Main Current(kA)	Trim Q1 Current(kA)	Trim Q3 Current(kA)
PCC	Power Converter Configuration	-	-	-
PIC2	PIC check with SB current	-	-	-
PLI1.s1	Splice Mapping	2	-1	-1
PLI1.d1	Powering Failure	2	-1	-1
PLI1.fl	QPS Provoked Quench	2	-1	-1
PLI1.d2	Powering Failure	2	1	1
PLI1.f2	QPS Provoked Quench	2	1	1
PLI1.f3	QPS Provoked Quench	2	1	-1
PLI1.f4	QPS Provoked Quench	2	-1	1
PLI1.f5	QPS Provoked Quench	2	0	0
PLI1.g1	Manual Triggering of Q1a CLIQ Unit	2	0	0
PLI1.g2	Manual Triggering of Q1b CLIQ Unit	2	0	0
PLI1.g3	Manual Triggering of Q2a CLIQ Unit	2	0	0
PLI1.g4	Manual Triggering of Q2b CLIQ Unit	2	0	0
PLI1.g5	Manual Triggering of Q3a CLIQ Unit	2	0	0
PLI1.g6	Manual Triggering of Q3b CLIQ Unit	2	0	0

Tests at 2 kA (2/4)

Step	Test Description	Main Current(kA)	Trim Q1 Current(kA)	Trim Q3 Current(kA)
PLI2.s1	Splice Mapping	6	1	1
PLI2.d1	Powering Failure	6	1	1
PLI2.f1	QPS Provoked Quench	6	1	1
PLI2.d2	Powering Failure	6	-1	-1
PLI2.f2	QPS Provoked Quench	6	0	0
PLI1.gl	Manual Triggering of Q1a CLIQ Unit	6	0	0
PLI1.g2	Manual Triggering of Q1b CLIQ Unit	6	0	0
PLI1.g3	Manual Triggering of Q2a CLIQ Unit	6	0	0
PLI1.g4	Manual Triggering of Q2b CLIQ Unit	6	0	0
PLI1.g5	Manual Triggering of Q3a CLIQ Unit	6	0	0
PLI1.g6	Manual Triggering of Q3b CLIQ Unit	6	0	0

Overview of Number of Quenches in the HWC

Control, Supervision and Analysis Software for HWC

SY 26

HL-LHC IT String Control, Analysis and Supervision Software

Software for the HL-LHC IT String

- Roadmap set for the full lifetime of the String Operation (HWC tests, String-Specific tests, etc.)
- The software architecture chosen to be as close as possible to the LS3 implementation of the software for HL-LHC HWC
- Engineering Specifications is prepared (EDMS no. 2806419)

Execution of the HWC Powering Tests

As done in the case of the HL-LHC HWC

MP3 Analysis of the HWC Powering Tests

• Analysis tools in the framework of Sigmon (Signal Monitoring – <u>link</u>), and in Jupyter Notebooks for MP3 (development already started for HWC 2021) and will continue in 2023-24

for the HL-LHC IT String

HL-LHC Inner Triplet	14 kA IPD	2 kA	200 A	80-120A
New Procedures	New Procedures Based on LHC IPDs	New Procedures Based on 600 A Circuits with EE	New Procedures identical to 600 A circuits with EE	New Procedures identical to 80- 120 A circuits for LHC

Relevant QDS, cryogenics and other instrumentation signals will be checked by MP3 members after each test

Supervision and Analysis Tools

QPS DQAMSN600 20220526-053335.034_UA63.RCD.A56B2

Circuit Synoptic

Post Mortem Browser, Logging (Timber), etc.

- 0 ×

Conclusions

SY

31

Conclusions

- String Validation Program has been defined in 2022 and contains the IST and HWC steps for a complete commissioning, with several steps already ongoing
- HL-LHC IST and HWC represent and will prepare the steps to be done for the tunnel in LS3

- The defined steps are based on the experience from LHC
- Software for the IST and HWC are identical to the ones used for the tunnel

Thank you for your attention

SY