

QDS Input Patch Panels

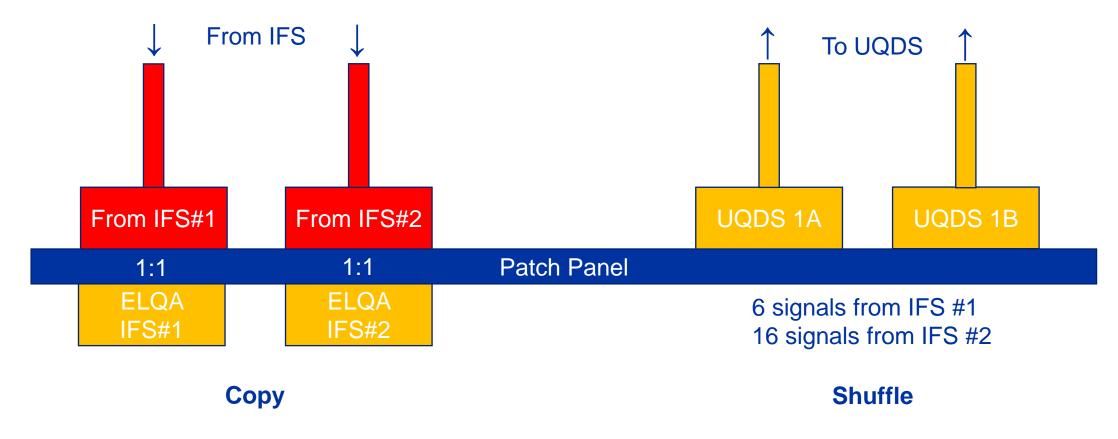
Jens Steckert, Vito Vizziello & MPE-EP colleagues

Thanks to: Giorgio D'Angelo, Samer Yammine, Alvaro Santiago Ferrer

Outline

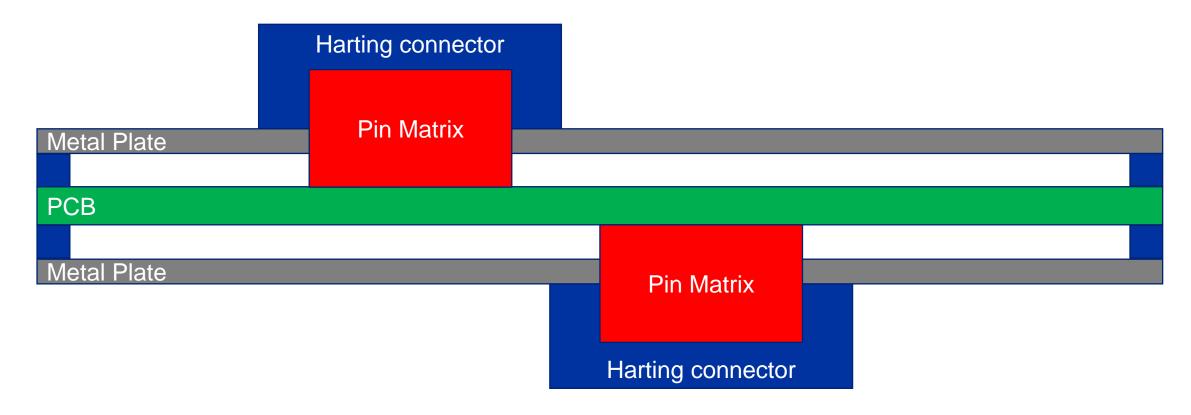
QDS Patch Panels Overview

- Motivation / Functionalities
 - Mirror all signals coming from IFS connector 1:1 to "ELQA" port
 - Map signals from several IFS boxes to the respective UQDS systems (one cable per UQDS)
- Basic design
 - Metal plate/PCB/Metal plate sandwich with PCB mounted Harting connectors
 - ELQA ports accessible from front side of rack
 - Signal shuffling on PCB
- Documentation
 - IFS cable pinout is 1:1 as documented in IFS by Giorgio
 - Signal Mapping: Spreadsheet Document (similar to IFS spreadsheets) per Patch Panel and patch panel PCB schematic



QDS Patch Panels

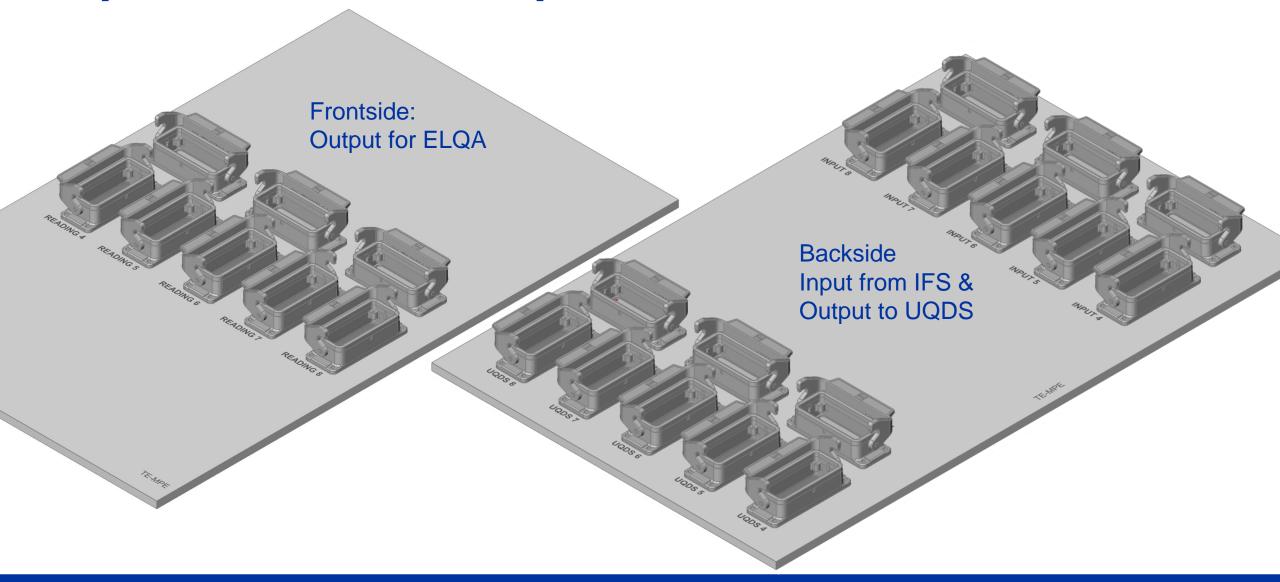
- Contrary to previous installations, signals from IFS boxes have to be distributed to multiple different crates
- IFS boxes which are directly attached to the cold masses are located in zones with very high radiation load → difficult access
- To enable convenient access of ELQA to the voltage taps of the magnets without disconnecting UQDS each connector is cloned
- For each UQDS cluster (1 rack) a dedicated patch panel is used to regroup the signals from the IFS boxes (up to 7) to the target UQDS boxes (up to 9)
- Signals not used by QDS are also routed on patch panels to allow access by ELQA


Patch panel example

- Signals from two IFS boxes are copied 1:1 to ELQA patch panel connector
- Signals from two IFS boxes are redistributed to one pair of UQDS

Basic Design

- Metal Plate / PCB / Metal Plate sandwich
- Harting connectors directly soldered to PCB



Patch panel types

- The main patch panel to each UQDS cluster is unique per IP side
- Currently we plan 5 unique Patch-Panels for Quench detection + 1 for PDSU
- The largest of these will connect 7 incoming cables to 7 ELQA ports and has 9 outgoing connectors for UQDS
- For Superconducting link, a generic, smaller PP design with 6 connectors (2 incoming, 2 ELQA copies & 2 UQDS connectors) is sufficient
- For All SC link protection units, a total of 4 generic panels are required per IP side

Implementation example:

ELQA procedures and intervention

- ELQA ports carry life magnet signals, and access to UR is possible with circuits powered.
- A dedicated procedure by ELQA has to be drafted to ensure that the protective covers on the ELQA ports are put in place after each intervention
- ELQA connectors, as on IFS use Female pins to reduce the risk of actually touching signals on magnet potential
- Connectors from IFS as well as to UQDS are mounted on the back side of the patchpanel which further reduces the exposure
- In general QDS will trigger if inputs are left open. This avoids that connectors are left disconnected accidentally

ELQA interventions to replace broken Vtaps

- In case of problems with voltage taps, ELQA is usually intervening directly on the IFS box
- The area around IP1 and IP5 will be too radioactive to directly access the IFS boxes
- All interventions have to be performed at the level of the QDS rack on the patch panels
- The patch panels are based on a PCB which means interventions on signal wires will be different than in IFS box
- To implement usual tasks such as "bridging" a broken Vtap, a cable patch has to be inserted between incoming cable from IFS and PP

Documentation

- IFS connector is fully documented in EDMS
- ELQA "copy" uses identical connector and pinout → IFS documentation applies
- Shuffling part of patch panel will be documented in a similar way as the IFS documents
- This table acts then as entry to the PCB schematic which will be stored the same way as all the other PCBs in EDMS (EDA-xxxxx)
- All fixed connections per PP type facilitate spares management and reproduction of a damaged PP should be easy.
- Due to low cost of PCB, even 100% spares could be ordered (re-ordering of a PCB from design files is also easily possible)

Summary

- The principal design of the QDS patch panels is established
- Prototype is in development and should be ready by end of the year
- PCB based panel avoids a lot of issues created by classical wire based patch boxes
- Documentation is straight forward thanks to the PCB workflow (EDA-Number etc.)
- String will be used as a final evaluation of the design

