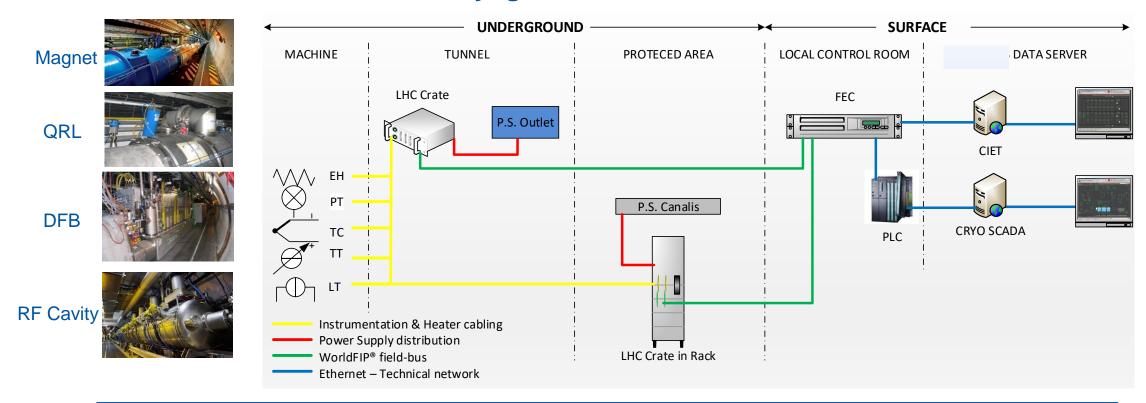
Cryogenic Instrumentation Scheme, System Tests and Commissioning

CERN
TE department
CRG group
TE-CRG-Instrumentation and Control Section
Juan Casas-Cubillos, Czeslaw Fluder, Bert Ivens, Marco Pezzetti, Antonio Tovar, Nikolaos Trikoupis, Douglas Valencon, Nicolas Vauthier
20 June 2023


Outline

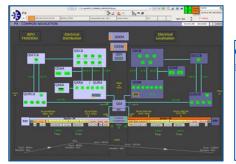
- Introduction & strategy applied
- Cryogenic instrumentation scheme
- ROADMAP for Instrumentation & radtol Electronic
- Data base & control system (String & P1-P5)
- Radiation test & cold pressure sensor
- Electrical crosstalk studies (cold powering)
- Commissioning
- Conclusion

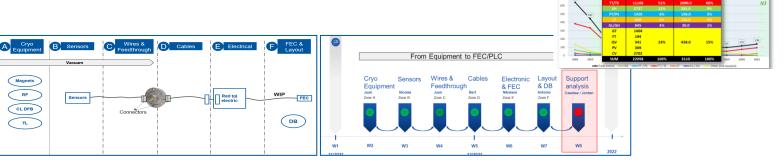
As an introduction...

LHC Cryogenic Instrumentation Architecture

2021-Sept / new CRG-IC section with corresponding mandate:

Consulting, Delivery & Installation Support over CERN Cryogenic Instrumentation with associated Sensors, Cabling, Electronics, Control, Calibration & Metrology.

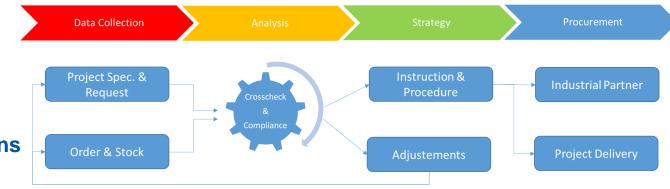

Cryogenic instrumentation strategy...


Based on LHC Architecture, Operation & Support History over the 10 past years ⇒REX campaign

Section Funds

Full discrete

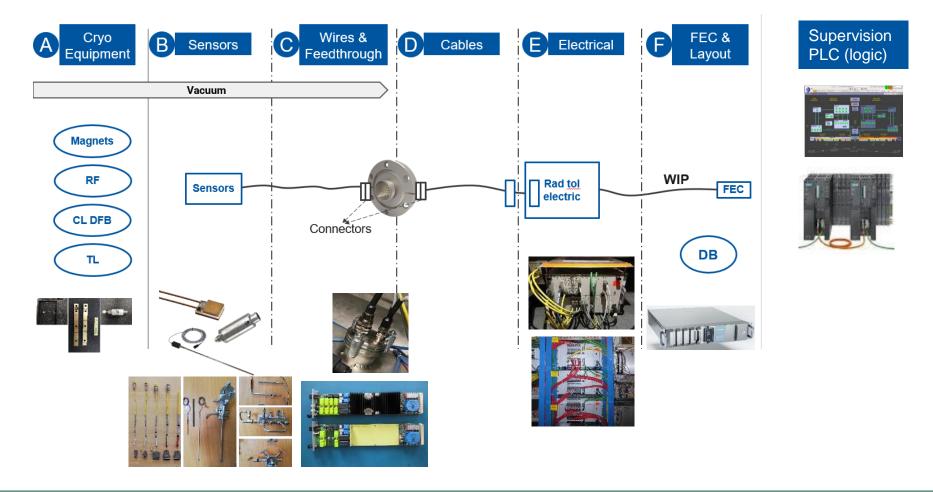
Full d



- ⇒ Review/Define/Share "State of the Art" of Cryo Instrumentation
- **⇒** Ensure/Optimize LHC Spare Procurement

for HL-LHC:

- ⇒ Cabling Minimization Strategy (DIC-DIR)
- ⇒ Standardization Guidelines & Best Practices
- **⇒** Collect WP's Leaders Instrumentation Spec/Request
- **⇒** Propose Standard/Turnkey Solutions to all Proj.Eng.
- □ Define QA Procedures & Training Qualification Sessions



Issue classification by Instrument type

- Introduction & strategy applied
- Cryogenic instrumentation scheme
- ROADMAP for Instrumentation & radtol Electronic
- Data base & control system (String & P1-P5)
- Radiation test & cold pressure sensor
- Electrical crosstalk studies (cold powering)
- Commissioning
- Conclusion

Cryogenic instrumentation scheme

CRG-IC section mandate is to deliver and consult the CERN over cryogenic instrumentation with associated electronics, calibration, metrology, support.

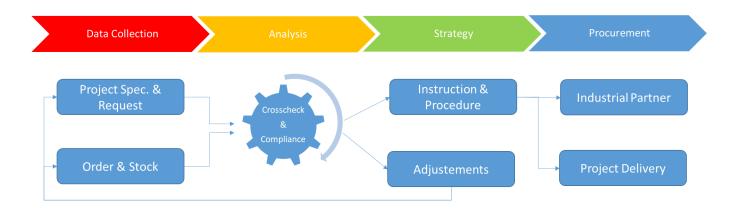
New!! Instrumentation & Electronic laboratories

CERNOX instrument laboratory

Long block

Short block

CERNOX sensors assembled and wired on blocks


Dedicated storage area with INFOR EAM database.

- Introduction & strategy applied
- Cryogenic instrumentation scheme
- ROADMAP for Instrumentation & radtol Electronic
- Data base & control system (String & P1-P5)
- Radiation test & cold pressure sensor
- Electrical crosstalk studies (cold powering)
- Commissioning
- Conclusion

ROADMAP of the Instrumentation cryogenic for HL-LHC CERN project.

REQUIREMENT

IDENTIFICATION

Iterative process (long!) to require and select the proper instrument

VALIDATION

Strict criteria, i.e. Leak test, thermal cycle, radiation test and demonstrator

w.r.t <u>Spec, Tools & Databases</u> technical training for personal qualification. Cable & connectors recommendation

COMMISSIONING w.r.t <u>Spec</u>, <u>Tools</u> technical training for OPERATION

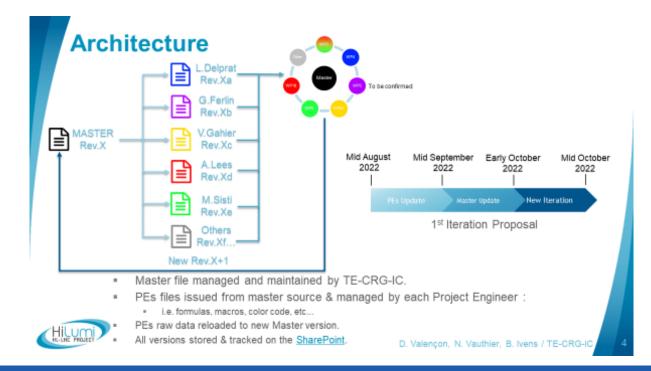
IPT criterias

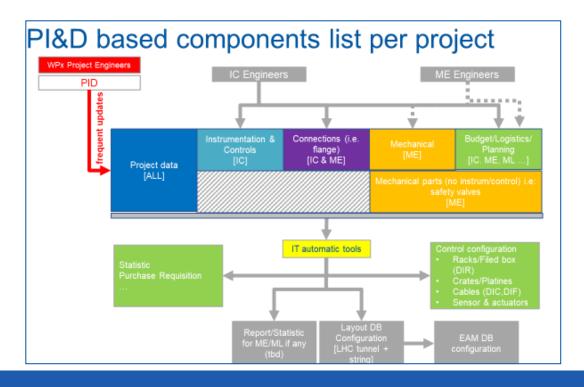
PROCUREMENT

INSTALLATION

HL-LHC project cryogenic Instrumentation ROADMAP

HL-LHC WPx Requirement {PT- TT -LT - FT- EH}

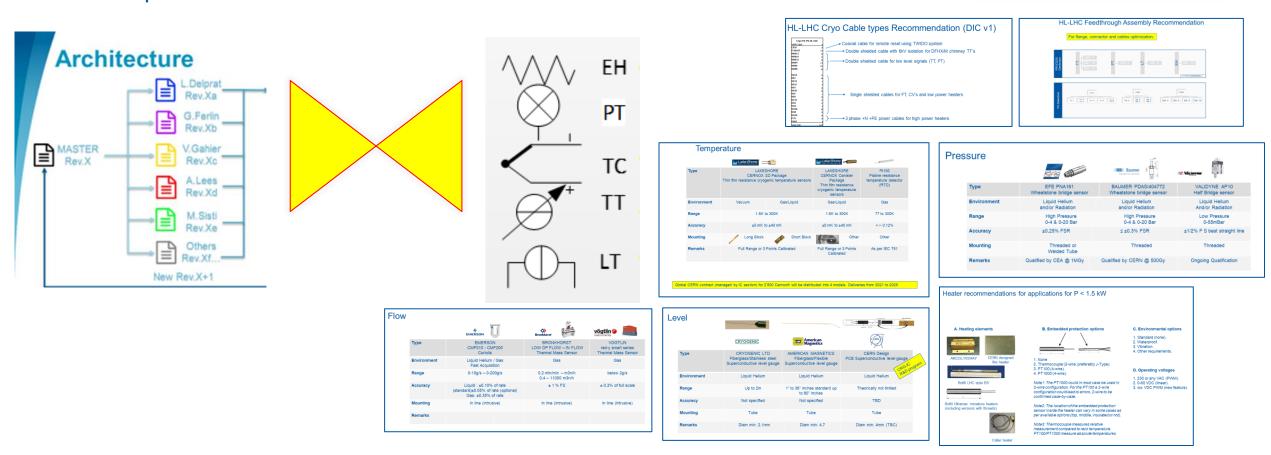

The workflow start with WPx design engineer provides a set of requirements:


- Quantity including criticality (redundancy)
- Measurement uncertainty
- Environmental conditions

Iterative process (long!) to require and select the proper instrument.

Data Collection

Single and robust **Master template** to collect specification and requirement: TE-CRG SharePoint! DB compatible

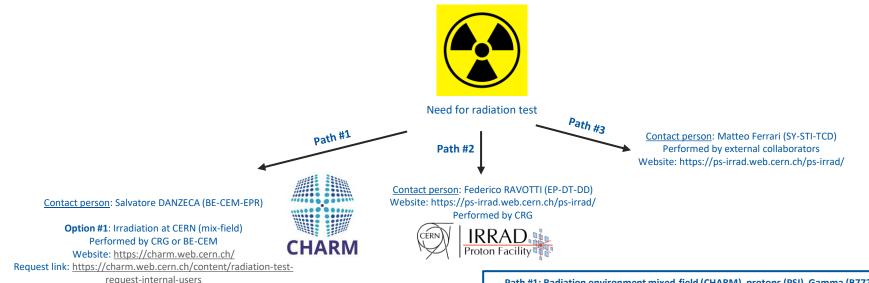


HL-LHC Project Cryogenic Instrumentation ROADMAP

Analysis

"HL-LHC specification"

"TE-CRG-IC Instrumentation Standard" EDMS/2899109



A cryogenic instrument selected must comply a strict criteria protocol such as: Leak Test, Thermal Cycle, Radiation Campaign and Demonstrator.

Strategy for radiation tests on electronics, instruments or material

Radiation affects in a non predictable way the characteristics of sensor. Radiation qualification trough tests were carried to understand effects from heavier and more energetic particles.

Option #2: Irradiation at CERN (Gamma rays)
CERN B772.

Option #3: Irradiation outside CERN (neutrons/protons/gamma)

e.g. PSI or others)

Performed by CRG or BE-CEM

Path #1: Radiation environment mixed-field (CHARM), protons (PSI), Gamma (B772), ... Electronics/Instruments/Material

Test can be passive (no power) or active (on-power) and can be controlled online.

Doses that can be reached: Typically, 100s of Gy to kGy in few weeks.

Max dose in the range of 100-200 kGy close to target and very long periods.

Path #2: Radiation environment: protons. Instruments/Material

Very small samples (beam size), high doses can be achieved MGys. System can be active (on power) and monitored online.

Path #3: Radiation environment (Gamma rays) Electronics/Instruments/Material

Voluminous objects is possible.

The strategy and type of radiation environment needed depends on the application and needs to be discussed with the TE-CRG responsible (Nikolaos TRIKOUPIS).

Some further info: R2E Annual Meeting 2022: https://indico.cern.ch/event/1116677/

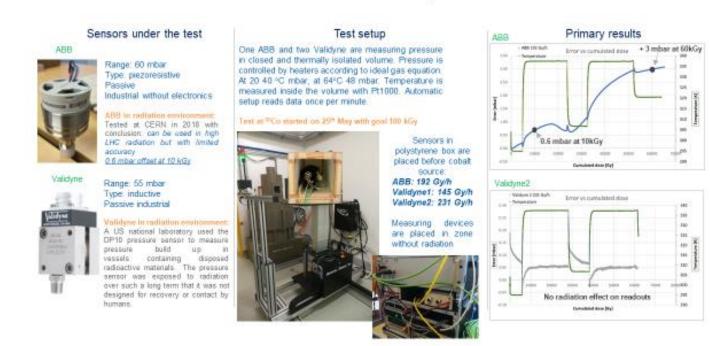


Radiation campaigns

Radiation affects in a non predictable way the characteristics of any sensor. Specific radiation tests were carried to understand effects from heavier and more energetic particles.

Irradiation tests performed at external facility (Expected 1.5 MGy, tested OK up to 5 MGy)

Industrial electrical heater CERN designed flex heater



Connector bodies

Electrical heaters tested with LN₂ before & after irradiation (>30 thermal cycles, 2 days testing)

Radiation Test: Low 0-60 mbar pressure sensors

PT "cold applications" 0-20 bar installed!

Not intended to be in HL-LHC P1/P5, ONLY FOR PRESSURE WAVE STUDIES

EFE model: PNA161

Radiation hard certified to 1MGy

EFE sensing technology

Thin film

No oil no o-rings

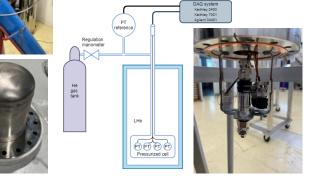
Diaphragm welded on to the pressure port All stainless steel design

- Tested ranges 4 and 20 bar
- Accuracy

Linearity and hysteresis: ±0.25% FS Repeatability ±0.02% FS

- · Radiation test certificate
- Sensitivity 2 to 5 mV/V
- ◆ Operating temperature; -40 to + 125 °C
- Compensated temperature range: 0 to + 60 °C

Tested at CryoLab in LHe (4K)



Tested with TT/PT IC electronic card

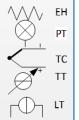

Tests in LHe

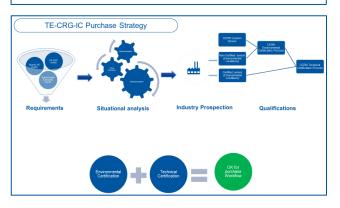
PT under the test are pressurized with He from the gas bottle and cooled down to temperature of 4K using a LHe.

Results example

Input impedance change (warm → cold) up to 8 % Calibration curve linear (offset 0 to 300 mbar) → as a result sensors must be calibrated at cold individually before installation

Installation


CFBF1 @SM18 Shuffling Module on N Line New cable by CRG-IC 05-2023


CFBF1 @SM18 Shuffling Module Mounted on filter on M Line Existing spare wires of Vtape used 06-2023

HL-LHC project cryogenic Instrumentation ROADMAP

TE-CRG-IC Purchase Strategy HL LHC WPs LHC Spare parts Experiments R&D Projects Take the opportunity to reduce prices by increasing the volume for other TE-CRG-IC activities.

11 - Pt100												
	Qty											
Туре	CC	Cold Powering	HEL	IT	MS	QXL	SUM					
Standard	22	396	210	16		144	788					
Cold finger		8					8					
Collar	3						3					
Flex	11						11					
t.b.d	310					116	426					
SUM							1236					

Level gauge							
			Qt	у			
Туре	CC	Cold Powering	HEL	IT	MS	QXL	SUM
0-200mm		8					8
0-470mm		8				32	8
t.b.d	22		3		8	12	45
SUM							61

Qty												
Туре	CC	Cold Powering	HEL	IT	MS	QXL	SUM					
100W	20	32		64	8		124					
175W (3 cartridges)	40						40					
200W	10						10					
250W	300					48	348					
500W						12	12					
5000W						16	16					
15000W		8					8					
t.b.d	3		47				50					
SUM							608					

Absolute pressure sensors

			Qt	y			
Туре	CC	Cold	HEL	IT	MS	QXL	SUM
		Powering					
0-60mBar	20	4					24
0-4 Bar		16		8		32	56
0-20 Bar						84	84
t.b.d	2		3			8	13
SUM							177

Differential pressure sensors

			O	ty			
Туре	CC	Cold Powering	HEL	IT	MS	QXL	SUM
0-350mBar		8					8
SUM							8

Pressure switch

TTC35GTC SWITE	•••						
			Qt	у			
Туре	CC	Cold Powering	HEL	IT	MS	QXL	SUM
t.b.d.						24	8
SUM							8

Procurement

Feedthroughs							
			Q	ty			
Туре	CC	Cold Powering	HEL	IT	MS	QXL	SUM
DN100 1 MIL 16	8			12		8	28
DN100 2 MIL 32	12					8	20
DN100 1 MIL 32 and 1 MIL 4	4						4
DN100 1 MIL 32	8			8		24	40
DN100 1 MIL 4				8		4	12
DN100 1 MIL 3						4	4
DN100 1 MIL 10	8					16	24
DN63 2 MIL 6	8						8
DN63 1 MIL 8		4					4
DN63 1 MIL4 and 1 MIL 8	16						16
DN40 1 MIL 16		4				8	12
DN40 1 MIL 8						12	12
DN40 1 MIL 4						28	28
DN40 1 MIL 6						28	28
TBD		24	16		8	20	68
CLIBA							200

			Q	ty			
Туре	CC	Cold Powering	HEL	IT	MS	QXL	SUM
MIL 4	20			8		32	60
MIL 6	16					28	44
MIL 8	16	4				12	32
MIL 10	8					20	28
MIL 16	8	4		12		16	40
MIL 32	36			8		40	84
TBD		24	16		8	20	68

Connectors MIL-C 26482

INSTALLATION methodology

CERN: IC Example (proto) plus Technical Protocol TRAINING with documentation and validation.

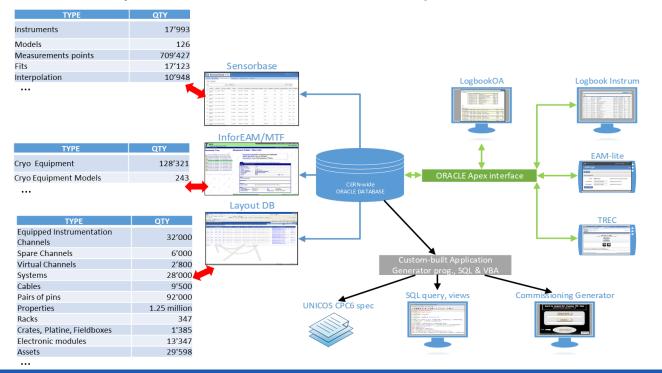
Industry: Technical Protocol TRAINING with documentation and validation.

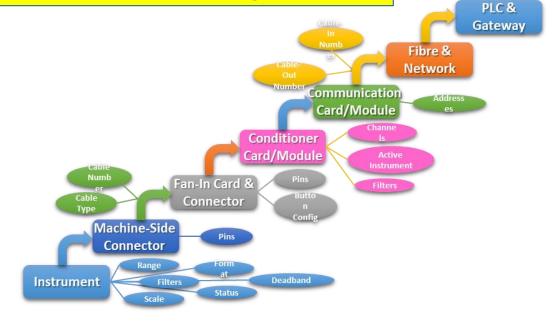
HL-LHC radtol electronic "ROADMAP"

Preliminary design Prototyping Needs	Main parts procurement	Design	Prototyping	Radiation tests	Production	Acceptance tests
Needs were estimated as: 700 -> 850 x TT/PT 130 -> 150? x EH 100 x LT 50 -> 100 x FIP, 40 -> 60 x Power 50 -> 100?? x Lateral 50 x DI/DO New low-pressure card?	 Long delay parts Orders of 145 kCHF already placed. Parts stock in INFOR & B276. Automated BOM- INFOR. 	• TE/CRG	Managed by BE/CEM.	Outsourced to BE/CEM @CHARM/PSI (batch validations) Or by CRG @ CHARM (prototypes)	Managed by BE/CEM or TE/CRG.	Electrical tests and testbenches.

	In stock today	Quantity	2021			20	022				2023			2024			2025			LS3	
Crate Projects			Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2 Q3	Q4	Q1	Q2	Q3 Q4	2026	2027 20	028
Crate	0	100		Design	Prototype	Produ	ction	Installation												Installation	
Crate transformers	~20	80			Design	Prototype	Production	Installation					F	Productio	n					Installation	
Crate backpanel	~15	90			Parts procurement			Production					F	Productio	n	Ra	d test			Installation	
Lateral cards	0	???				Parts procurement			Design	Prototype	Production		F	Productio	n					Installation	
TT/PT cards insulated	0	~375	Parts procurement						Design	Prototype	Production	Rad test	F	Productio	n	Ra	d test			Installation	
TT/PT cards	0	~375	Parts procurement						Design	Prototype	Production	Rad test	F	Productio	n	Ra	d test			Installation	
Low Pressure card	0	???				Parts procurement			Design	Prototype	Production		F	Productio	n	Ra	d test			Installation	
LT cards	40	~50+50				Parts procurement				Production			F	Productio	n	Ra	d test			Installation	
EH cards	~40	~100	Parts procurement	Design				Prototype				Rad test	F	Productio	n	Ra	d test			Installation	
NanoFIP	0	150								Design	Parts procurement	Prototype	Rad test	Pr	oduction	Ra	d test			Installation	
DI/DO card	0	???						Design	Parts procurement	Prototype		Rad test	F	Productio	n	Ra	d test			Installation	
AI/AO card	0	???						Design	Parts procurement	Prototype		Rad test	F	Productio	n	Ra	d test			Installation	
Power cards	44	???				Parts procurement							F	Productio	n					Installation	

- Introduction & strategy applied
- Cryogenic instrumentation scheme
- ROADMAP for Instrumentation & radtol Electronic
- Data base & control system (String & P1-P5)
- Radiation test & cold pressure sensor
- Electrical crosstalk studies (cold powering)
- Commissioning
- Conclusion

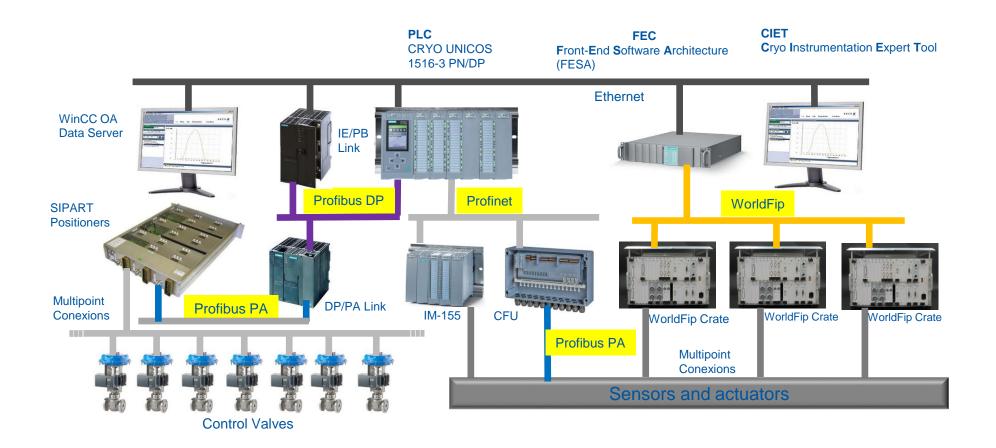



Data integration into the CERN layout database

DB fundamental for Commissioning, support operation and future algorithm ML!

Single, Consistent & Reliable source of information to ensure:

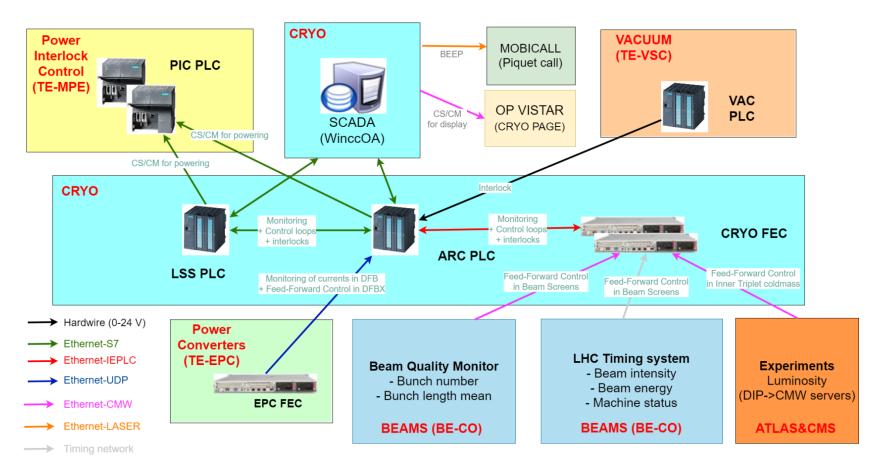
- Identification & HL-LHC standard Naming convention
- Functional positions and hierarchies for all registered equipment
- Connexion & properties of instrumentation channels
- Traceability & Links between other data repositories



Tools to ensure:

- Installation, Cabling and Commissioning of channel
- Design & Configuration of Cryo Control System
- Custom-built applications for maintenance/diagnostic

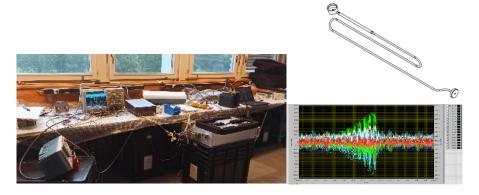
SM18 SQXL cryogenic Control Architecture



LHC & HL-LHC cryo communication

Interlocking methods and communication with other systems

SIGNAL EXCHANGES BETWEEN CRYO AND EXTERNAL WORLD



- Introduction & strategy applied
- Cryogenic instrumentation scheme
- ROADMAP for Instrumentation & radtol Electronic
- Data base & control system (String & P1-P5)
- Radiation test & cold pressure sensor
- Electrical crosstalk studies (cold powering)
- Commissioning
- Conclusion

Interference/susceptibility of TE-CRG HV TT cards / EMI generation of TE-CRG EH cards to QPS

Crosstalk studies

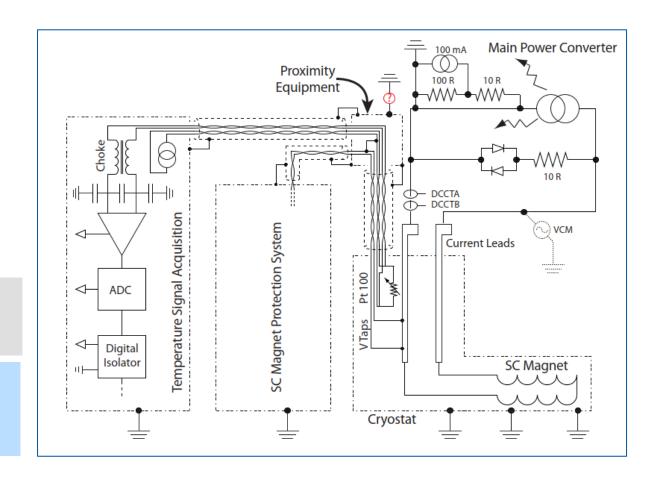
Cross-talk measurements inside IFS tubes (3403 mm). Impact of EH PWM mode on Voltage-taps

Interference/susceptibility of TE-CRG HV TT cards

Working within EMC forum.

Need for EMI tests in the LHC communicated in the 1st EMC forum (Chair Daniel Valuch).

Report from M. Bastos EDMS 2738038 -> (CRG LINK here https://edms.cern.ch/document/2862719).


EMI generation of TE-CRG EH cards to QPS

Crosstalk studies performed in LAB36 and SM18

Report of TE-MPE at https://wikis.cern.ch/display/MPEEP/Cryo+heater+measurements

Pending report of TE-CRG for LAB36/SM18.

Preliminary recommendation for HL-LHC: Use 100 VAC/50Hz stepdown transformer .

- Introduction & strategy applied
- Cryogenic instrumentation scheme
- ROADMAP for Instrumentation & radtol Electronic
- Data base & control system (String & P1-P5)
- Radiation test & cold pressure sensor
- Electrical crosstalk studies (cold powering)
- Commissioning
- Conclusion

Commissioning phases "step by step"

The commission procedure/methodology is a 20 years validated protocol tested in LHC And also, in other various project such as :HIE-ISOLDE, SM18, BA6-SPS....

QUANTITATIVE AND QUALITATIF RESULTS

Shielding 1 V Sensor V Chassis

Instrumentation Availability

The first operation confirms that the instruments are installed and operational.

Then, the second operation in front of electronic crate includes 3 main set-ups:

- checking the consistency of the data with respect to the LHC layout database,
- simulation of the instrument using a programmable resistor to set a value and compare it with the reading output to validate the data acquisition system,

final global testing including instruments, electronic card and communication to validate

the complete instrumentation chain.

Cryogenic Instrumentation Performance Field Validation Tools

Sensors	Qty	Туре
Lhe Level Gauge	528	Superconducting Wire
Pressure Sensor	694	Strain Bridge
Pressure Sensor	8	Profibus PA
Thermometers	9564	in total
	3300	Pt 100
	5400	Cernox™
	336	Pt 100
	528	Pt 100 & Type-J thermocouple
GH/GL/PS Signals	1152	Mechanical Switch
Actuators	Qty	Туре
Control Valves	1436	Profibus PA
Control Valves	1184	Analogue
ON-OFF Valves	374	Pneumatic
Quench Valves	342	Pneumatic
Electrical Heater	2462	Electrical resistor
Electronics	Qty	Туре
Crate	853	Mechanical Assembly
Power Source Card	1184	
Temperature - Pressure Card	4502	
Sc Level Crad	413	COTS based Design
Digital In Card	317	
FIP comm. card	1266	

	Installed	Oper	ational	Degr	aded	Dam	aged
Superconducting Magnets	204	193	94.6%	3	1.5%	8	3.9%
Cryogenic Distribution Line	254	253	99.6%	1	0.4%	0	0.0%
Line N and C' thermometers	108	108	100.0%	0	0.0%	0	0.0%
Electrical Distribution Feedboxes	59	59	100.0%	0	0.0%	0	0.0%
Inner Triplet Assemblies	37	37	100.0%	0	0.0%	0	0.0%
Total	662	650	98.2%	4	0.6%	8	1.2%

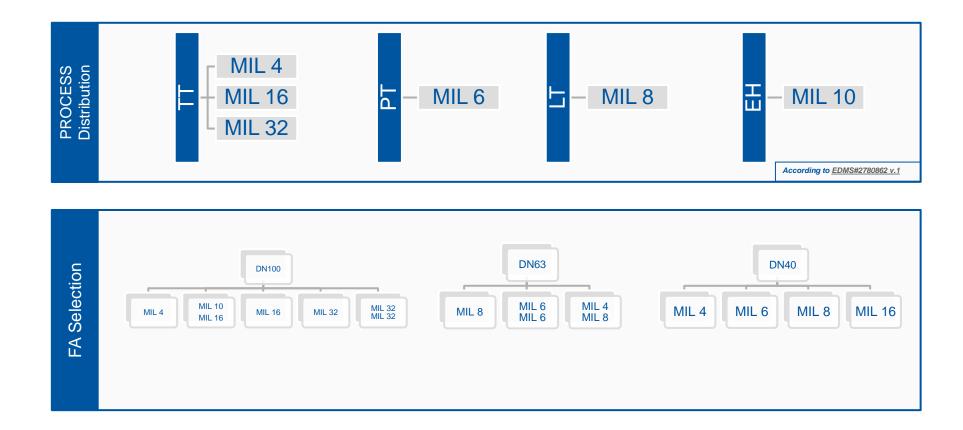
Conclusion

The LHC cryogenic system with his 16 years of operation have shown impressive results of availability (more than 99%), precision and robustness.

The LHC based HL-LHC cryogenics (CERN-UNICOS) process control associated with custom radtol electronic for his cryogenic instrumentation **solution** is a large complex inter-departmental project with a matrix responsibilities.

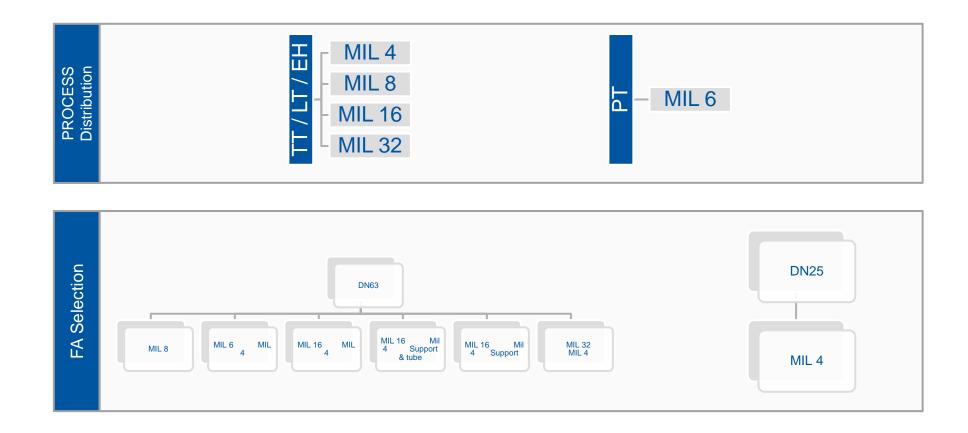
The HL-LHC cryogenic associated with custom radtol electronic for its cryogenic instrumentation being constructed is a mature "state of the art" technology.

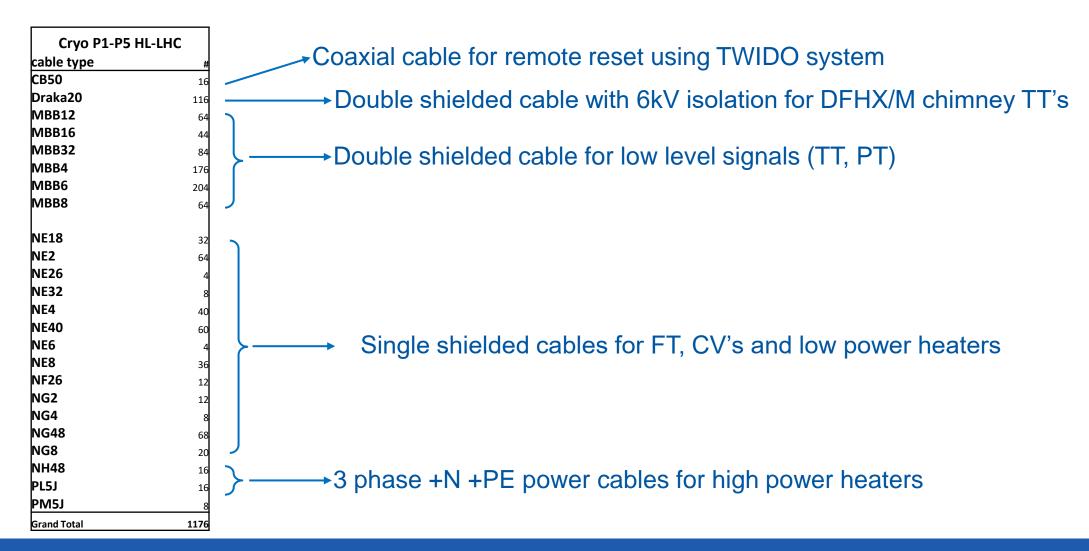
Moreover, a continuous and repetitive evolution w.r.t the LHC cryogenic system is ongoing.



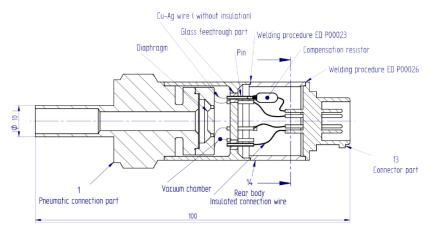
Spare slides

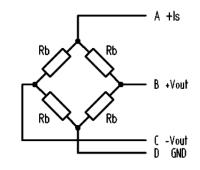
HL-LHC Feedthrough Assembly Recommendation


For flange, connector and cables optimization.


LHC Feedthrough Assembly Recommendation

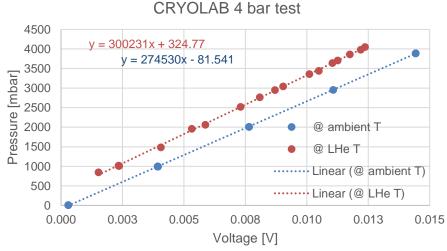
For flange, connector and cables optimization done in LHC.


HL-LHC Cryo Cable types Recommendation (DIC v1)



6/19/2023 Document reference 29

PT "cold applications" 0-4 bar

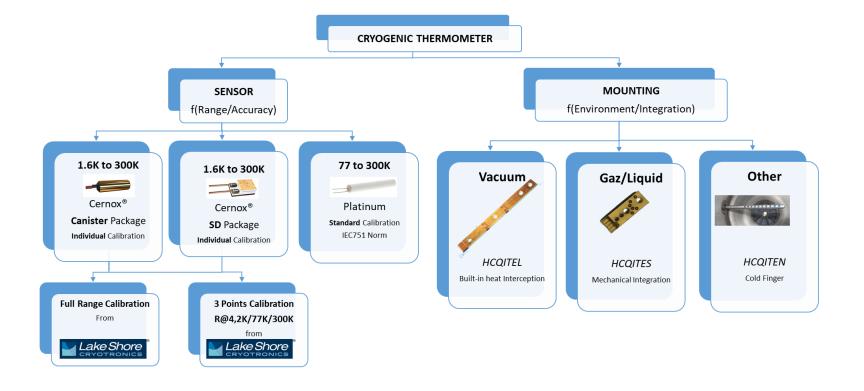


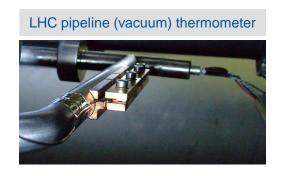
TESTED FOR COLD APPLICATION

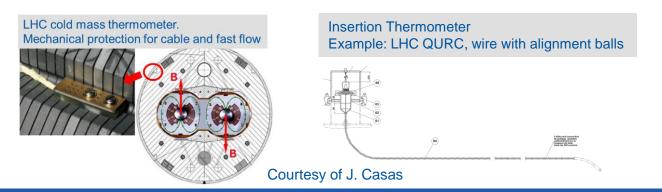
Tests were performed before summer holidays.

Drawing is for Baumer sensors; EFE refused to send documentation with detailed design (Discussion still in progress), but design is identical.

Calibration curves different for ambient and LHe temperatures, but still linear.


Temperature




Global CERN contract (managed by IC section) for 2'500 Cernox® will be distributed into 4 models. Deliveries from 2021 to 2025

Temperature

Pressure

Туре	EFE PNA161 Wheatstone bridge sensor	BAUMER PDAS/404772 Wheatstone bridge sensor	VALIDYNE AP10 Half Bridge sensor
Environment	Liquid Helium and/or Radiation	Liquid Helium and/or Radiation	Liquid Helium And/or Radiation
Range	High Pressure 0-4 & 0-20 Bar	High Pressure 0-4 & 0-20 Bar	Low Pressure 0-55mBar
Accuracy	±0,25% FSR	≤ ±0,3% FSR	±1/2% F S best straight line
Mounting	Threaded or Welded Tube	Threaded	Threaded
Remarks	Qualified by CEA @ 1MGy	Qualified by CERN @ 500Gy	Ongoing Qualification

Level

Туре	CRYOGENIC LTD Fiberglass/Stainless steel Superconductive level gauge	AMERICAN MAGNETICS Fiberglass/Flexible Superconductive level gauge	CERN Design PCB Superconductive level gauge CRG-IC R&D Program Liquid Helium
Environment	Liquid Helium	Liquid Helium	Liquid Helium Rate
Range	Up to 2m	1" to 36" inches standard up to 80" inches	Theorically not limited
Accuracy	Not specified	Not specified	TBD
Mounting	Tube	Tube	Tube
Remarks	Diam min: 2,1mm	Diam min: 4,7	Diam min: 4mm (TBC)

Flow

Туре	EMERSON CMF010 - CMF200 Coriolis	BRONKHORST LOW DP FLOW – IN FLOW Thermal Mass Sensor	VOGTLIN red-y smart series Thermal Mass Sensor
Environment	Liquid Helium / Gas Fast Acquisition	Gas	Gas
Range	0-10g/s - 0-200g/s	0.2 mln/min – m3n/h 0.4 – 11000 m3n/h	below 2g/s
Accuracy	Liquid: ±0.10% of rate (standard)±0.05% of rate (optional) Gas: ±0.35% of rate	± 1 % FS	± 0.3% of full scale
Mounting	In line (intrusive)	In line (intrusive)	In line (intrusive)
Remarks			

Heater

Туре	ARCOL HS100 100R F Wirewound resistors	Industrial Multiple Suppliers Cartridge	Industrial Multiple Suppliers Inserted Cartridge	CERN Design Kapton Foil
Environment	Liquid Helium/Gas and/or Radiation	Liquid Helium/Gas and/or Radiation	Gas and/or Radiation	Liquid Helium and/or Radiation
Range	100W	5000 / 15000W	500 / 1000W	100W
Accuracy	-	-	-	-
Mounting	Copper plate		Hole inserted	Glued
Remarks	PWM controlled		w/ or w/o Thermocouple	w/ Pt100

Radiation Test: Low 0-60 mbar pressure sensors

Sensors under the test

ABB

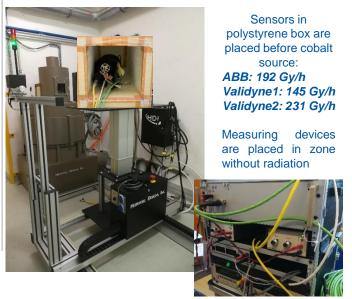
Range: 60 mbar Type: piezoresistive Passive Industrial without electronics

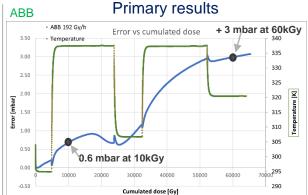
ABB in radiation environment:

Tested at CERN in 2018 with conclusion: can be used in high LHC radiation but with limited accuracy
0.6 mbar offset at 10 kGy

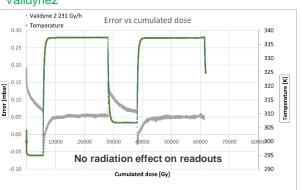
Validyne

Range: 55 mbar Type: inductive Passive industrial


Validyne in radiation environment:


A US national laboratory used the DP10 pressure sensor to measure pressure build up in vessels containing disposed radioactive materials. The pressure sensor was exposed to radiation over such a long term that it was not designed for recovery or contact by humans.

Test setup


One ABB and two Validyne are measuring pressure in closed and thermally isolated volume. Pressure is controlled by heaters according to ideal gas equation. At 20 40 °C mbar, at 64°C 48 mbar. Temperature is measured inside the volume with Pt1000. Automatic setup reads data once per minute.

Test at 60Co started on 25th May with goal 100 kGy

