

System Test and Commissioning of QDS Instrumentation and Monitoring

Tomasz Podzorny – on behalf of the TE-MPE-EP team

HL-LHC Magnet Circuit Instrumentation Day 2023

Outline

- 1. Overview of QDS systems and their supervision
- 2. Individual system tests
- 3. Powering tests
- 4. Instrumentation and test methodology
- 5. Conclusions

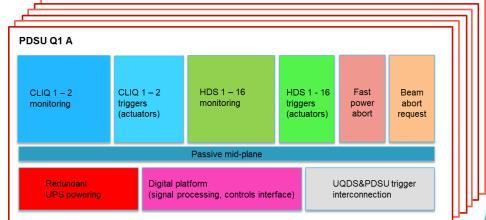
Universal Quench Detection System (UQDS)

ADC

ADC

- Baseline for HL-LHC protection
 - Details in the talk of Jens
- Common hardware
- Behaviour configuration dependent
- Detailed testing is mandatory
- SCADA integration
 - Common control interface
 - Unified data acquisition interface

TOP le	vel Entity				onfiguration n				
ADC	Constant		value	commen	t				_
interfa	CHANNEL	S_IN	16						
ADC	CHANNEL	S_OUT	31						
interfa	NUM_LOGIC		1	only abs t	threshold				
x1				8x compa	arison				5
	CHANNELS_PER_RAM		8	65536					-
	MAVG filter real mul		TRUE						
interfa	Channel Signal				Туре	Rang	ge	Category	
Pon	0 U_HU			Coil voltage		+/-2	2.5V	Analog	5
	1	U_HD		Coil voltage		+/-2	2.5V	Analog	-
	2	U_VR			Coil voltage		2.5V	Analog	
	3	U_VL			Coil voltage		12.5V	Analog	-
	4	UB_DFX_HU			Bus Bar voltage		mV	Analog	1
	5	UB_DFX_HD			Bus Bar voltage		mV	Analog	1
	6	UB_DFX_VL			Bus Bar voltage		mV	Analog	
	7	UB_DFX_VR			Bus Bar voltage		mV	Analog	
	8	8 Isens_H_A			Circuit Current			Analog	
	9 Isens_H_B				Circuit C			Analog	
_	10 Isens_V_A				Circuit C			Analog	
	11	lsens_V_B			Circuit C			Analog	
	12	12 U_HU_LowGain			Coil volt	+/-1	147V	Analog	
	13 U_HD_LowGain			Coil voltage low gain		147V	Analog		
	14	U_VL_LowGain			Coil voltage low gain		147V	Analog	
	15	U_VR_LowGain			Coil voltage low gain		147V	Analog	
	16	lsens_H			Circuit Current			Analog	
	17	lsens_V			Circuit Current			Analog	
	18	U_H_diff			Difference Voltage between coils (V)			Analog	
	19	U_H_sum			Magnet Voltage (V)			Analog	
	20				Derivative of circuit current (A/s)			Analog	
	21	21 U_res_H			Resistive voltage (calculated) (V)			Analog	
	22 U_V_diff			Differen	en coils (V)		Analog		

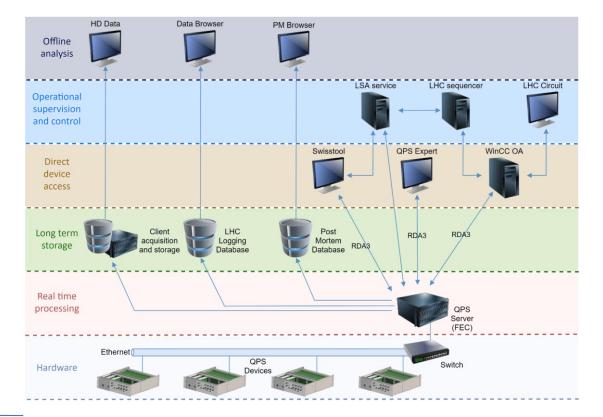


Tomasz Podzorny

Protection Devices Supervision Unit (PDSU)

- System supervising protection devices:
 - Trigger links from 2x4 UQDS
 - Fans out to 96 Quench Heater Discharge Supply Power (HDS) trigger lines
 - Fans out to 12 Coupling-Loss-Induced Quench (CLIQ) trigger lines
 - Monitors 636 signals
- A trip of QDS:
 - Activates all HDS/CLIQ
 - Trips the Interlock loop
- A spurious trip of any HDS/CLIQ:
 - Trips the Interlock loop
 - Requests beam abort
 - Activates remaining HDS/CLIQ

PDSU


Complex system

- Multitude of inputs translate into interlocks
- Common hardware
- Common firmware and configuration
- Detailed testing is mandatory
- SCADA integration
 - Common control interface
 - Common data acquisition interface

- PDSU exposes following signals:
 - 16 DQHDS voltages (analog)
 - 16 DQHDS currents (analog)
 - 16 DQHDS trigger voltages (analog)
 - 16 DQHDS supply voltages (analog)
 - 16 DQHDS connection (digital)
 - 2 CLIQ voltages (analog)
 - 8 CLIQ currents (analog)
 - 2 CLIQ trigger voltages (analog)
 - 4 trigger supply voltages (analog)
 - 8 UQDS triggers (digital)
 - 2 PDSU triggers (digital)
 - Available commands:
 - Reset
 - Buffer read
 - Buffer trigger
 - Logging
 - Test mode trigger
 - Read parameters
 - Write parameters

QPS Supervision and Control

System tests and commissioning

- 1. Integrity of the QDS cabling
- 2. Installation of QDS units
- 3. Supervision and configuration
- 4. QDS system verification phase 1
- 5. QDS system verification phase 2
- 6. Low current powering
- 7. QDS system tests completed

Integrity of the QDS cabling

- Objective
 - Verification of the presence and instrumentation cabling integrity
- Requirements:
 - Field access required
 - Instrumentation VTAPs starting from Instrumentation Feedthrough System (IFS) box and ending on the QDS equipment verified by the ELQA team.
- Procedure
 - Verification of the routing between QDS patch panels and UQDS units
 - Verification of the integrity of interlock and trigger cables of UQDS
 - Verification of the instrumentation between PDSU and HDS/CLIQ
 - Verification of the integrity of interlock and trigger cables of PDSU
 - Verification of Ethernet cables

Installation of QDS units

- Objective
 - UQDS and PDSU systems installed and powered
- Requirements
 - Field access required
- Procedure
 - Verification of the position of UQDS crates
 - Verification of the position of PDSU crates
 - Verification of the redundant powering of the systems

Supervision and configuration

- Objective
 - Systems available in the SCADA and properly configured
- Requirements:
 - Remote access required
 - UQDS instrumentation is either connected to superconducting circuits or shorted in order to avoid continuous tripping of the protection
- Procedure
 - Verification of the QPS SCADA stack
 - Verification of availability and responsivity of all devices
 - Verification of the configuration of UQDS and PDSU systems
 - Verification of data integrity in NXCALS and PM services

QDS system verification – phase 1

- Objective
 - Basic verification of the instrumentation
- Requirements:
 - Field and remote accesses required
 - Superconducting circuits are in the non-powered state
 - HDS and CLIQ units connected and not energized
- Procedure
 - Verification of all analogue signals
 - All signals are present, live and within specified ranges
 - Basic interlock and trigger lines tests
 - All detectors are tested
 - Aims on verifying that all connections are present

QDS system verification – phase 2

- Objective
 - Integrity of interlocks and trigger lines
- Requirements:
 - Remote access required
 - Superconducting magnets cooled to the nominal temperature
 - HDS and CLIQ units energized to low energy and latched
 - Units will be discharged several times during tests
 - Interlocks of Energy Extraction (EE) systems installed
- Procedure
 - Verification of analogue signals of PDSU units
 - Verification of all interlock and trigger lines of UQDS units
 - Verification of all interlock and trigger lines of PDSU units
 - Verification of activation of EE systems

Low current powering

- Objective
 - Exhaustive verification of the instrumentation
- Requirements:
 - Remote access required
 - Superconducting circuits powered with low and safe currents as defined by MCF/MP3
- Procedure
 - Reassurance that powering conditions are met
 - Verification of analogue signals of UQDS units
 - Magnet instrumentation and current sensors are subject of tests
 - Signals tested for expected patterns in given powering conditions

QDS system tests completed

- QDS equipment released for further powering tests
 - Quench detection systems tested completely
 - Quench detection infrastructure conforms the specification
- Subsequent steps
 - Monitoring of the health of the system during powering tests
 - Following up the protection events

Instrumentation and test methodology

- Archiving operational and protection event data sets
 - NXCALS service
 - PM service
- QDS tests tracking will rely on AccTesting
 - Reinforcement of the order and execution of all required steps
 - The individual steps are to be defined in collaboration with MCF/MP3
 - The actual implementation to be requested from TE-MPE-CB
- Tests will be executed and supervised by the QDS expert team
 - Dedicated scripts shall facilitate this process
 - Expert tools and checks will rely on direct subscriptions

Conclusions

- QDS validation comprises of multiple stages
 - Targets different aspects of system installation and operation
 - All stages are equally important
- QDS tests are crucial to ensure the protection
 - Meticulous execution with right amount of assigned time is a key
 - Processes tracking and data archiving are paramount
- Existing procedures and tools enable successful execution
 - Adaptations are required for IT-String infrastructure

Thank you for your attention.

