

Extra Dimensions: CMS

S. A. Schmitz

III. Physikalisches Institut A, RWTH Aachen

on behalf of the CMS Collaboration

LPCC BSM Jamboree 2011, CERN

RNTHAACHEN

- Introduction
- Search for Microscopic Black Hole Signatures (first published collider limits)
- Search for New Physics with a Mono-Jet and Missing Transverse Energy (extends Tevatron results)
- Search for Large Extra Dimensions in the Diphoton Final State (extends Tevatron results)
- Search for Large Extra Dimensions in Dimuon Events (extends Tevatron results)
- Search for Randall-Sundrum Gravitons Decaying into Two Photons (close to Tevatron results)

Stefan A. Schmitz 12.4.2011

Outlook: 2011 and Beyond

CMS: 2010 Data Taking

proton-proton collisions in 2010: 35-40 pb⁻¹ of data recorded for analyses at \sqrt{s} =7 TeV

A Window towards Extra Dimensions?

RWITHAACHEN

The ADD model

The ADD (Arkani-Hamed, Dimopoulos, Dvali) model leads to an effective field theory based on the ideas of

- Compactified Large Extra Dimensions
- Brane Physics

- The Standard Model (SM) is confined to a brane
- Graviton can propagate in the bulk
- Effective field theory at "low" energies

RWITHAACHEN

Microscopic Black Holes

© Sabine Hossenfelder

- Reduced Planck scale due to large extra dimension → increased Schwarzschild radius
- Large cross-sections possible O(100 pb)
- Ansatz: $\sigma \sim \pi r_s^2$
- Signature: events with high particle multiplicities and high transversal momentum

simulation of signal events with:

a) BlackMaxb) Charybdis2

(no brane tension, rotating/non-rotating, no graviton) (rotating, stable remnant)

MBH: Background Estimation

Search variables: S_T , N (sum of transverse momenta, object multiplicity) Considered objects: (jets,photons,electrons,muons)

Derive dominant QCD multijet bkg from data:

- a) analytic fit for N=2 and N=3 in signal free region
- b) use that S_T shape independent of N
- c) normalize fitted shapes in signal free regions to estimate bkg for $N \ge 3..5$

Microscopic Black Holes: Results

Bayesian 95% Upper Limits (Counting Exp.), parameter dependent optimization

Dominant Systematics:

differences between considered fit functions,

normalization for higher multiplicities

RWITHAACHEN

The coupling of the graviton to the Standard Model energy-momentum tensor results in (also other channels possible) :

- a) monojet events
- via graviton emmission
- **b) enhanced non-resonant diphoton production**
- via virtual Graviton exchange
- c) enhanced non-resonant dimuon production
- via virtual Graviton exchange

The validity range of the effective field theory is not directly predicted by the ADD model ...

Example: dimuon signal

No general agreement yet on how to proceed ...

RWITHAACHEN

ADD Monojet Analysis

- $p_{T, jl}$ >110 GeV

RNTHAACHEN

data driven bkg estimation

ADD Monojets: Results

RWITHAACHEN

ADD Diphoton Analysis

RWITHAACHEN

Results: ADD Diphoton Analysis

RWITHAACHEN

ADD Dimuon Analysis

RWITHAACHEN

ADD Dimuons: Observed Limits

Bayesian 95% Upper Limits (Counting Exp.) on signal cross section

CMS

All numbers are based on Bayesian 95% Upper Limits CMS, Monojet:

CMS, Diphoton (limits in TeV):

	GRW	Hewett		HLZ							
		Pos.	Neg.	$n_{\rm ED} = 2$	$n_{\rm ED} = 3$	$n_{\rm ED} = 4$	$n_{\rm ED} = 5$	$n_{\rm ED} = 6$	$n_{\rm ED} = 7$		
Full	1.94	1.74	1.71	1.89	2.31	1.94	1.76	1.63	1.55		
Trunc.	1.84	1.60	1.50	1.80	2.23	1.84	1.63	1.46	1.31		

CMS, Dimuon:

	Λ_T [TeV] (GRW)	$M_s [\text{TeV}/c^2] (\text{HLZ})$						
		n = 2	n = 3	n = 4	n = 5	n = 6	n = 7	
Full	1.80	1.75	2.15	1.80	1.63	1.52	1.43	
Truncated	1.68	1.67	2.09	1.68	1.49	1.34	1.24	

RWTHAACHEN

Randall Sundrum (RS-1) Scenario

Stefan A. Schmitz 12.4.2011

RNTHAACHEN

Slice of AdS₅ space between two 3+1 branes

 \mathbf{M}_{1}

Results: RS-1 Diphotons

SM background shape from Diphoton events based on Pythia6

simulation of signal events with Pythia6

data driven study of jet → photon fake rate used to study bkg from dijet and photon+jet events

dominant systematic uncertainty: SM diphoton k-factor

18

95% Bayesian upper limits in optimized (sliding) mass windows

RWITHAACHEN

Outlook: 2011 and Beyond

- non-surprising plans:
 - results \rightarrow updated results
 - preliminary results \rightarrow results
 - shift focus from limits towards potential discoveries
- consider additional searches and/or combine channels to improve the results
- of course, we are always looking out for new phenomenological results from the theory side that could trigger new analyses or modify existing search strategies

- Search for Microscopic Black Hole Signatures published in Physics Letters B
- Search for Large Extra Dimensions in the Diphoton Final State

arXiv:1103.4279v1, submitted to JHEP

 Search for Large Extra Dimensions in Dimuon Events

CMS-PAS-EXO-10-020, Physics Analsis Summary

• Link to all public CMS Exotica results (including all approved plots)

CMSPublic/PhysicsResultsEXO

