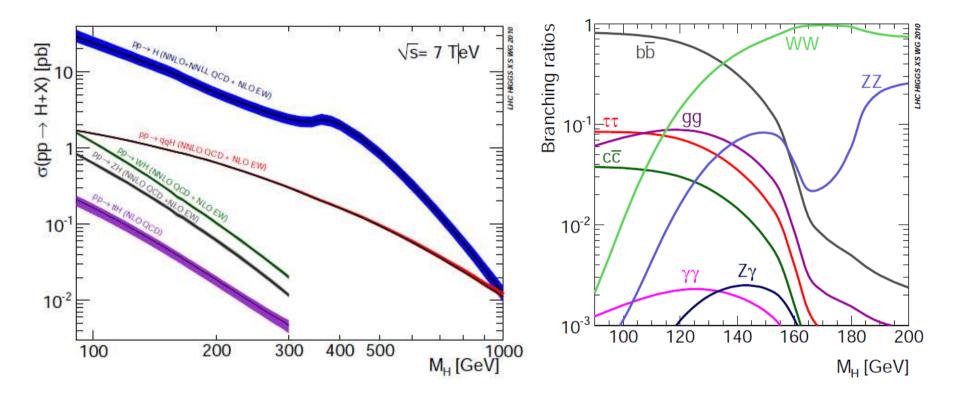


SM Higgs Searches: ATLAS

Jonas Strandberg on behalf of the ATLAS Collaboration

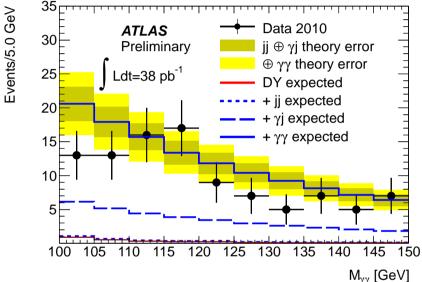

- 1. Introduction
- 2. $H \rightarrow \gamma \gamma$
- 3. $H \to WW^{(*)} \to \ell \nu \ell \nu$
- 4. $H \to WW \to \ell \nu qq$
- 5. $H \to ZZ^{(*)} \to \ell \ell \ell \ell$
- 6. $H \rightarrow ZZ \rightarrow \ell \ell q q$
- 7. $H \rightarrow ZZ \rightarrow \ell \ell \nu \nu$
- 8. Conclusions

1. Introduction

- This talk will discuss the ATLAS results for SM Higgs boson searches that were presented at the winter conferences this year.
 - Covers the most sensitive channels but there are many more efforts going on in the collaboration.
- The dataset used is the pp collisions (at 7 TeV) from 2010.
 - The integrated luminosity for the different channels varies between $\mathcal{L}_{int} = 35\text{-}43 \text{ pb}^{-1}$.
- The question of which statistics method to use for the exclusion limit has been hotly debated recently.
 - ATLAS default results obtained with the Power Constraint Limit (PCL) CL_{s+b} method. Typically give 20% better limits than CL_s .
 - In this talk most of the results will be given with both the PCL CL_{s+b} and CL_s methods (for comparison).

Higgs Boson Production and Decay

- Of the possible combinations of production and decay modes, six different channels were used for the winter confs.
 - All calculations of cross sections and branching ratios are taken from the LHC Cross Section Working Group.



2. The $\mathbf{H} \to \gamma \gamma$ Search

- Events are selected requiring two photons with $p_T > 40$ GeV and $p_T > 25$ GeV and that the invariat mass is $100 < m_{\gamma\gamma} < 150$ GeV.
 - There are 99 events in data passing these selections.
- The main backgrounds are from $\gamma\gamma$, γj , jj and DY production.
 - Bkg composition derived from data and verified with MC.
- The di-photon mass full-width-at-half-maximum is around 4.4 GeV for a Higgs boson mass of $m_H = 120$ GeV.
- The expected number of $H \rightarrow \gamma \gamma$ signal events passing all analysis cuts for a few selected Higgs boson masses are:

Higgs boson mass (GeV)	110	115	120	130	140
Number of signal events	$0.43 \substack{+0.11 \\ -0.09}$	$0.45 \substack{+0.11 \\ -0.10}$	$0.45 \substack{+0.11 \\ -0.10}$	$0.41^{egin{array}{c}+0.10\-0.08\end{array}}$	0.31 ± 0.08

Background Composition in the $H \rightarrow \gamma \gamma$ Search

Di-photon invariant mass

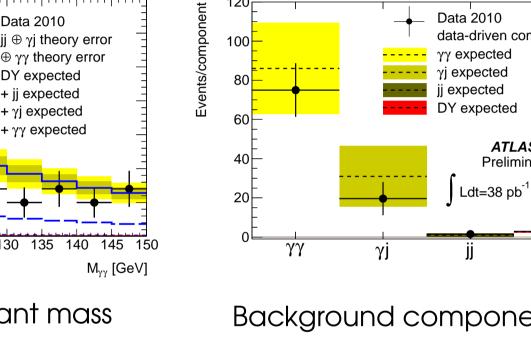
 The 99 candidate events and the expected composition of the background.

Background components

Data 2010

γγ expected

γj expected


data-driven composition

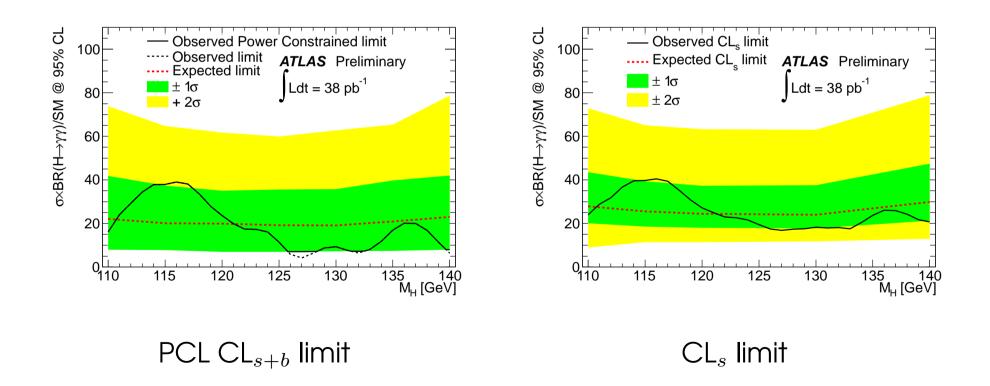
ATLAS

Preliminary

DY

• Comparison of the background composition derived from the data and from MC.

120₁


100

80

Exclusion Limit for the $\mathbf{H} \to \gamma \gamma$ Search

- The exclusion limit calculated with Power Constraint Limit (PCL) CL_{s+b} and the CL_s methods (for comparison).
 - Exclusion limits comparable to the Tevatron limits for $H \rightarrow \gamma \gamma$.

3. The $\mathbf{H} \to \mathbf{W} \mathbf{W}^{(*)} \to \ell \nu \ell \nu$ Search

- The $H \to WW^{(*)} \to \ell \nu \ell \nu$ channel benefits from relatively large branching ratio and very clean dilepton signal.
- Important event selections are for example:
 - Requiring two leptons with $p_{\rm T}>20~{\rm GeV}$ and $p_{\rm T}>15~{\rm GeV}$.
 - Requiring missing transverse energy $E_{\rm T}^{\rm miss} > 30$ GeV.
 - Requirements on $m_{\ell\ell}$, $\Delta\phi(\ell,\ell)$ and the transverse mass $m_{\rm T} = \sqrt{(E_{\rm T}^{\ell\ell} + E_{\rm T}^{\rm miss})^2 (\mathbf{P}_{\rm T}^{\ell\ell} + \mathbf{P}_{\rm T}^{\rm miss})^2}$.
- Events are treated separately depending on the lepton flavors (*ee*, $e\mu$ and $\mu\mu$) and the number of jets (0, 1 and 2 jets).
 - In total nine different channels considered.
- Analysis done for Higgs masses between $120 < m_H < 200$ GeV.

H→WW (m_µ=170 GeV)

 $\sqrt{s} = 7 \text{ TeV}$

 $L dt = 35 \text{ pb}^{-1}$

250

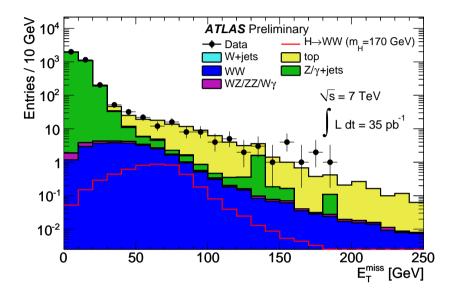
300

m_∓ [GeV]

The 0-jets Channel

Entries / 10 GeV

10


10⁻¹

 10^{-2}

0

50

100

 $E_{\mathrm{T}}^{\mathrm{miss}}$ after selecting two leptons

- Before the $E_{\rm T}^{\rm miss}$ selection, dominated by Z/γ^* events.
 - Suppressed by the $E_{\rm T}^{\rm miss}$ and $m_{\ell\ell}$ requirements.

 m_{T} for the final candidates

150

ATLAS Preliminary

top

200

Z/γ+jets

🔶 Data

W+jets

WZ/ZZ/Wγ

WW

- Plot shows the $m_{\rm T}$ distribution before selecting on it.
 - Three events within the dashed lines survive cuts.

H→WW (m_⊥=170 GeV)

 $\sqrt{s} = 7 \text{ TeV}$

L dt = 35 pb⁻¹

250

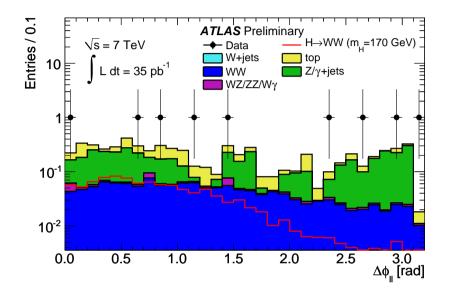
300

m_∓ [GeV]

The 1-jet Channel

Entries / 10 GeV

10


10

 10^{-2}

0

50

100

 $\Delta \phi(\ell,\ell)$ before selection

- Opening angle between the leptons expected to be small.
 - Require $\Delta \phi < 1.3$ (< 1.8) for $m_H < 170$ ($m_H > 170$) GeV.

 m_{T} for the final candidates

150

ATLAS Preliminary

top

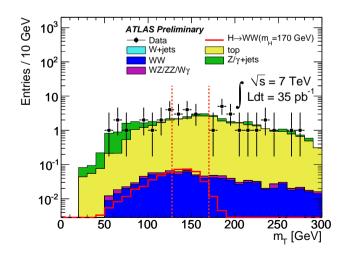
200

Z/γ+jets

🔶 Data

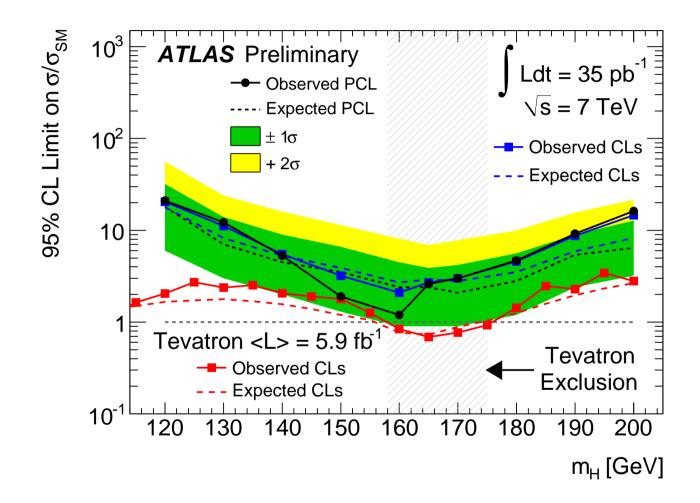
W+jets

WZ/ZZ/Wγ


WW

- Plot shows the $m_{\rm T}$ distribution before selecting on it.
 - One event within the dashed lines survives cuts.

The 2-jets Channel

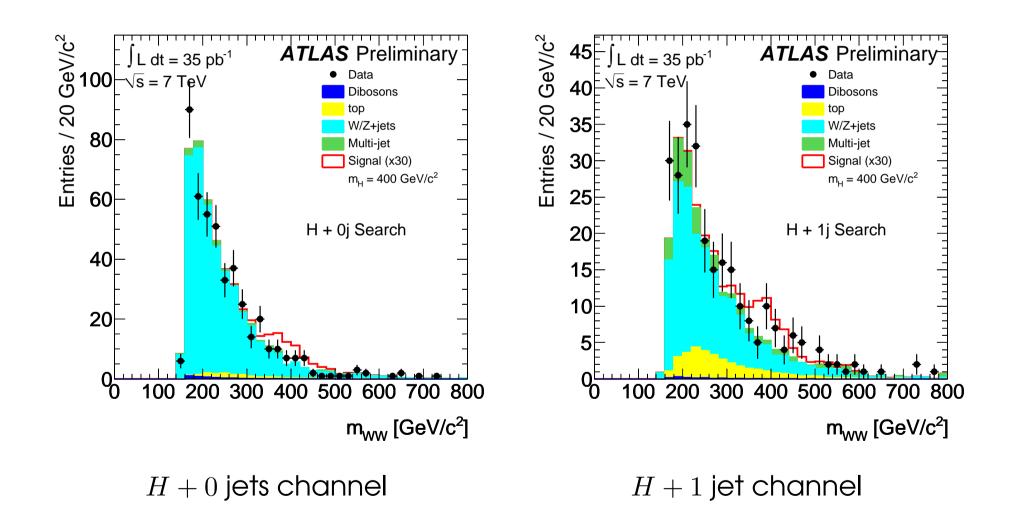

- The 2-jets channel mainly targeted for the signal events produced through the vector boson fusion production mode.
 - Tight selections on the two tag jets increase the S/B.
 - Low expected yields for the current integrated luminosity, analysis more suitable for larger data samples.
- No events pass all the event selections, 0.02 signal events and 0.06 background events expected for $m_H = 170$ GeV.

- Forward jet distributions studied with the first data, looks very well modelled by Monte Carlo.
- Plot shows $m_{\rm T}$ distribution after only the lepton selections and some tag jet selections have been applied.

Exclusion Limit for $\mathbf{H} \to \mathbf{W}\mathbf{W}^{(*)} \to \ell\nu\ell\nu$

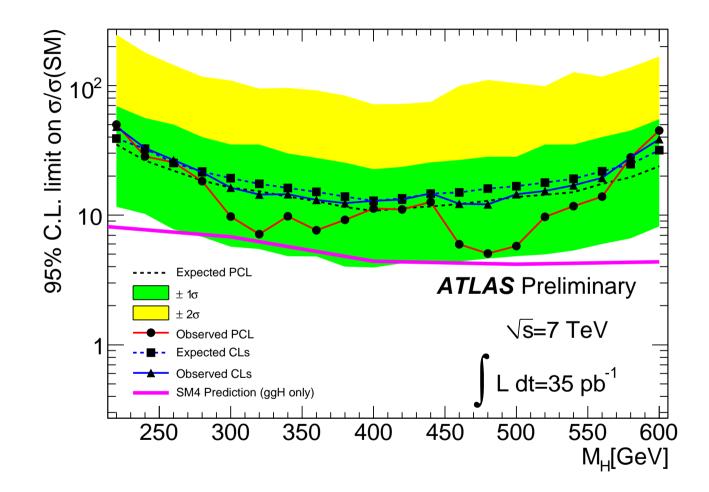
• Exclusion limit calculated with both PCL CL_{s+b} and CL_s methods.

Exclusion Limit for $\mathbf{H} o \mathbf{W} \mathbf{W}^{(*)} o \ell
u \ell
u$ 11.



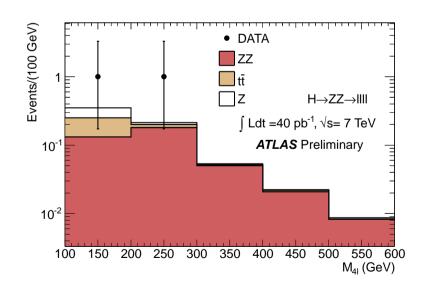
4. The $\mathbf{H} \to \mathbf{W} \mathbf{W} \to \ell \nu \mathbf{q} \mathbf{q}$ Search

- The $H \to WW \to \ell \nu q q$ channel offers good sensitivity for high m_H .
 - Analysis performed for Higgs masses $220 < m_H < 600$ GeV.
- The main event selections include:
 - Requiring one lepton with $p_{\rm T} > 30$ GeV.
 - Requiring that the $E_{\rm T}^{\rm miss} > 30$ GeV.
 - Requiring two or three jets in the event.
- The discriminant variable is the *WW* invariant mass. Look for a peak on top of the continuous background.
- The main backgrounds are from W+jets and $t\bar{t}$ production.
 - For a Higgs boson mass of $m_H = 400$ GeV, about 2 signal events expected for an estimated background of 670 events.



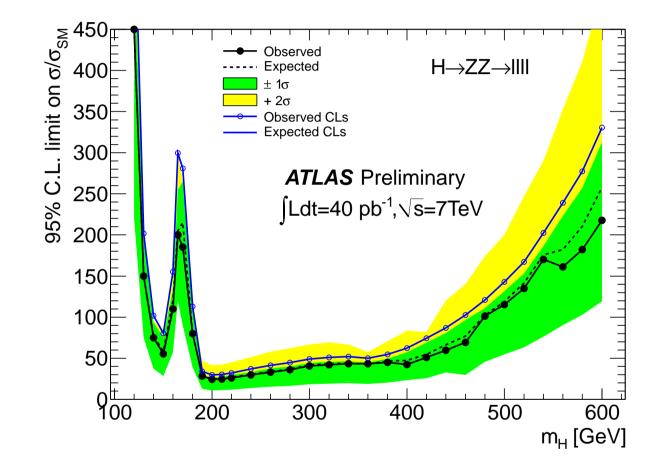
The WW Invariant Mass Distributions

Exclusion Limit for $\mathbf{H} \to \mathbf{W} \mathbf{W} \to \ell \nu \mathbf{q} \mathbf{q}$


• Exclusion limit calculated with both PCL CL_{s+b} and CL_s methods.

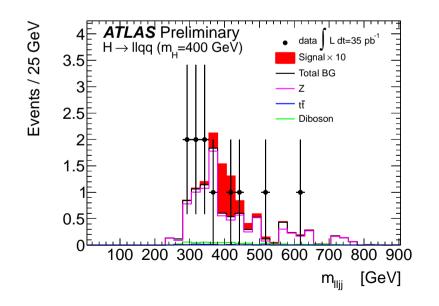
Exclusion Limit for $\mathbf{H} o \mathbf{W} \mathbf{W} o \ell
u \mathbf{q} \mathbf{q}$

5. The $\mathbf{H} \to \mathbf{Z}\mathbf{Z}^{(*)} \to \ell\ell\ell\ell$ Search


- The $H \to ZZ^{(*)} \to \ell \ell \ell \ell$ is the experimentally cleanest signature.
 - Very narrow signal peak in the $m_{\ell\ell\ell}$ distribution can be reconstructed on top of the continuous background.
 - Analysis done for Higgs boson masses $130 < m_H < 600$ GeV,
- Event selection requires two pairs of opposite-charge same-flavor leptons. Two leptons required to have $p_{\rm T}>20$ GeV.

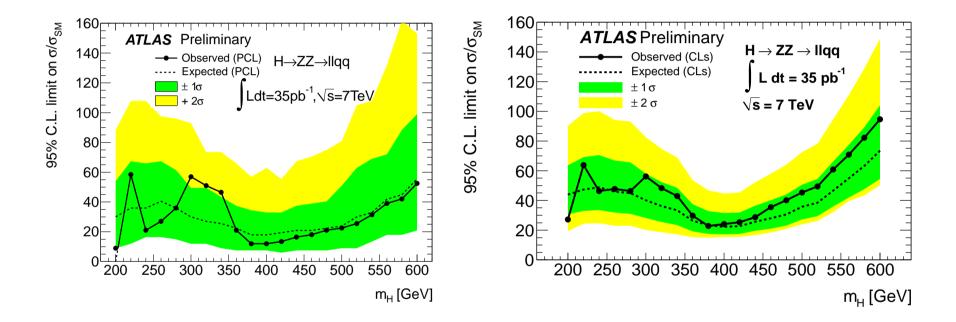
- Expected number of selected events low at current luminosity.
 - No events observed in data.
- Plot shows the $m_{\ell\ell\ell\ell}$ distribution before the isolation selections are applied to the leptons.

Exclusion Limit for the $\mathbf{H} \to \mathbf{Z}\mathbf{Z}^{(*)} \to \ell\ell\ell\ell$ Search


- Exclusion limit calculated with both PCL CL_{s+b} and CL_s methods.
 - Essentially bkg free search, expect limit to improve as $1/\mathcal{L}_{int}$.

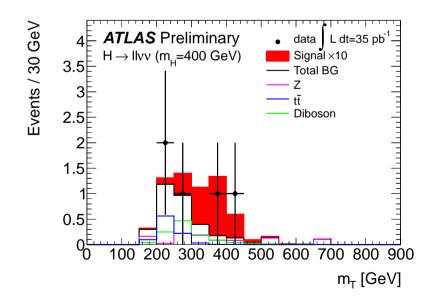
Exclusion Limit for the $\mathbf{H} \to \mathbf{ZZ}^{(*)} \to \ell\ell\ell\ell$ Search 16.

6. The $\mathbf{H} \to \mathbf{Z} \mathbf{Z} \to \ell \ell q q$ Search


- Compared to the $H \to ZZ^{(*)} \to \ell\ell\ell\ell$ channel, letting one $Z \to qq$ (or $Z \to \nu\nu$) increases the branching ratio a lot.
 - The $H \rightarrow ZZ \rightarrow \ell \ell q q$ search is performed for Higgs boson masses in the range $200 < m_H < 600$ GeV.
- Events are selected requiring a pair of leptons and a pair of jets, both consistent with coming from a Z boson decay.

- All decay products from the Higgs boson reconstructed.
 - Look for a signal peak in the $m_{\ell\ell jj}$ distribution.
- For the search at $m_H = 400$ GeV, 0.2 signal events and 10 background events expected.

Exclusion Limit for the $\mathbf{H} \to \mathbf{Z} \mathbf{Z} \to \ell \ell q q$ Search



• Exclusion limits obtained in the $H \rightarrow ZZ \rightarrow \ell \ell qq$ search with PCL CL_{s+b} (in the left plot) and CL_s (in the right plot).

7. The $\mathbf{H} \to \mathbf{Z} \mathbf{Z} \to \ell \ell \nu \nu$ Search


- The $H \to ZZ \to \ell \ell \nu \nu$ analysis is very similar to the $H \to ZZ \to \ell \ell qq$ search, require high $E_{\rm T}^{\rm miss}$ instead of the pair of jets.
 - Better background rejection, but no invariant mass peak.
 - Final discriminant is the transverse mass instead, defined as $m_T^2 \equiv \left[\sqrt{m_Z^2 + |\vec{p}_T^{\ \ell\ell}|^2} + \sqrt{m_Z^2 + |\vec{p}_T^{\ miss}|^2} \right]^2 - \left[\vec{p}_T^{\ \ell\ell} + \vec{p}_T^{\ miss} \right]^2.$

- Analysis performed for masses in the range $200 < m_H < 600$ GeV.
- For the search at $m_H = 400$ GeV, 0.3 signal events and 3.5 background events expected.
 - Five events are observed passing all selections in data.

AT LAS

Exclusion Limit for the $\mathbf{H} \to \mathbf{Z} \mathbf{Z} \to \ell \ell \nu \nu$ Search

• Exclusion limits obtained in the $H \rightarrow ZZ \rightarrow \ell \ell \nu \nu$ search with PCL CL_{s+b} (in the left plot) and CL_s (in the right plot).

8. Conclusions

- Searches for the Higgs boson presented in six different channels.
 - Each search performed in some range of Higgs boson masses.
 - The searches at ATLAS (and CMS) extend to higher Higgs masses than it was possible to cover at the Tevatron.
- Best expected limit is at $m_H = 170$ GeV where a cross section 2.1 times the SM is excluded from the $H \to WW^{(*)} \to \ell \nu \ell \nu$ search.
- Some channels have no events observed in data yet, expect an exciting year ahead of us when the $\mathcal{L}_{\rm int}$ increases significantly.

Combined exclusion limit coming soon!