Search for MSSM Higgs Bosons $A/H/h \rightarrow T^{+}T^{-}$ with the ATLAS Experiment

Jochen Dingfelder University of Bonn (for the ATLAS Collaboration)

1

LPCC Higgs+BSM Workshop CERN, 11 April 2011

MSSM Higgs at LHC

- MSSM: 2 Higgs doublets \Rightarrow 5 Higgs bosons Φ = h, H, A, H[±]
- 2 parameters: m_A , $tan\beta$
- Enhanced coupling to 3rd generation fermions in large regions of parameter space

Dominant production processes:

MSSM Higgs BF's: ~90% bb, ~10% т⁺т⁻

T-pair decay BF's: $TT \rightarrow \ell \ell \sim 1/9$ $TT \rightarrow \ell h \sim 4/9$ $TT \rightarrow h h \sim 4/9$

⇒ This analysis: Study lepton-hadron channel

Background Processes

Event Selection

Data & Simulated Backgrounds

	Electron	Muon
Selected data	74	132
MC Expectation (without QCD)	70±3	137±4
W+jets	26±2	41±2
Di-boson	0.26 ± 0.01	0.42 ± 0.02
Single-t	0.40 ± 0.06	0.65 ± 0.05
tī	2.8 ± 0.1	3.9 ± 0.1
$Z/\gamma^* ightarrow e^+e^-, \mu^+\mu^-$	9.8±0.9	11 ± 1
$Z/\gamma^* \to \tau^+ \tau^-$	30±2	81±3
$A/H/h$ signal ($m_A = 120 GeV$, tan $\beta = 40$)	17.9 ± 0.5	35.4±0.8

- 206 events observed in data
- Dominant backgrounds: $Z \rightarrow T^+T^-$ and W+jets
- QCD background has to be estimated from data!
- Signal efficiency: $\sim 3\%$ (8%) [×4/9] for m_A = 120 (200) GeV

Background Estimation

• Estimate background from same-sign (SS) data sample

$$\begin{split} n_{\mathrm{OS}}^{Bkg} = & n_{\mathrm{SS}}^{Bkg} + n_{\mathrm{OS-SS}}^{\mathrm{QCD}} + n_{\mathrm{OS-SS}}^{W} + n_{\mathrm{OS-SS}}^{Z} + n_{\mathrm{OS-SS}}^{\mathrm{other}} \\ \approx & n_{\mathrm{SS}}^{Bkg} + n_{\mathrm{OS-SS}}^{W} + n_{\mathrm{OS-SS}}^{Z} + n_{\mathrm{OS-SS}}^{\mathrm{other}} \\ \end{split}$$

Assumption made for QCD:

$$r_{
m QCD} = n(OS)/n(SS) \approx 1$$

Checked with QCD-enhanced sample

 $- E_T^{miss} < 15 \text{ GeV}$

- loosened lepton isolation

$$r_{
m QCD} = 1.16 \pm 0.04^{stat} \pm 0.09^{syst}$$

 $r_{
m QCD}^{MC} = 1.06 \pm 0.13^{stat}$

Background Estimation

- n_{SS} from nominal selection with $Q(\ell) \cdot Q(\tau) = +1$
- Z → T⁺T⁻ and other background OS-SS "add-on" from simulation
- W+jets OS-SS "add-on":
 - normalization from $M_T > 50 \text{ GeV}$ control sample
 - shape from simulation

Visible T⁺T⁻ Mass

Data-MC Comparison for other Distributions

Good agreement between data and estimated bkg:

- l and t kinematics - E.^{miss}

iet

Alternative Background Estimation

- Second background estimation method to:
 - estimate QCD and W+jets backgrounds separately
 - cross-check ratio r_{QCD}
- W+jets: Normalization from 70< $\rm M_T$ <120 GeV control sample Shape from simulation
- QCD: "ABCD" method with charge product and lepton isolation

$$\left(egin{array}{c} A & B \\ C & D \end{array}
ight) = \left(egin{array}{c} OS + \textit{Isolation} & OS + \textit{Inverted Isolation} \\ SS + \textit{Isolation} & SS + \textit{Inverted Isolation} \end{array}
ight)$$

Obtain QCD shape from region C, scale by ratio B/D

$$n_A^{QCD} = r_{B/D} \times n_C^{(data-non \ QCD \ MC)}$$

Alternative Background Estimation: QCD

 $\left(\begin{array}{cc}A & B\\C & D\end{array}\right) = \left(\begin{array}{cc}OS + Isolation & OS + Inverted Isolation\\SS + Isolation & SS + Inverted Isolation\end{array}\right)$

- Check necessary assumptions:
 Shapes in A (OS) and C (SS) are the same
 - Ratio $r_{A/C} = r_{B/D}$, i.e. variables uncorrelated

Compare "projections": AB vs. CD AC vs. BD

Alternative Background Estimation: QCD

 $\left(\begin{array}{cc}A & B\\C & D\end{array}\right) = \left(\begin{array}{cc}OS + Isolation & OS + Inverted Isolation\\SS + Isolation & SS + Inverted Isolation\end{array}\right)$

	Α	В	С	D
Data	203	1372	36	1195
Signal ($m_A = 120 \text{ GeV}$)	55.2 ± 1.0	2.2 ± 0.2	0.6 ± 0.1	0.11 ± 0.03
$W \rightarrow \ell \nu + \text{ jets}$	36.8 ± 1.8	3.0 ± 0.5	13.5 ± 1.1	0.8 ± 0.3
$W \rightarrow \tau \nu + \text{jets}$	21.7 ± 1.4	2.8 ± 0.6	5.7 ± 0.7	0.5 ± 0.2
$Z \rightarrow \ell^+ \ell^- + \text{jets}$	18.7 ± 1.3	1.8 ± 0.4	2.4 ± 0.5	0.3 ± 0.1
$Z \rightarrow \tau^+ \tau^- + \text{jets}$	103 ± 3	4.4 ± 0.6	3.8 ± 0.6	0.2 ± 0.1
tī	0.0070 ± 0.0002	0.0050 ± 0.0002	0.0020 ± 0.0001	0.0049 ± 0.0002

Subtract non-QCD background using MC

$$r_{
m QCD} = r_{B/D} = 1.14 \pm 0.05$$

 $n_A^{QCD} = r_{B/D} \times n_C^{(data-non \ QCD \ MC)} = 12.1 \pm 7.1$

Alternative Background Estimation

Both background estimation methods give consistent results!

$Z \rightarrow T^{+}T^{-}$ Background

- Estimate Z → T⁺T⁻ background from high-purity Z → µµ sample using "T-embedding" technique
- Remove μ's (track & calo. cells), replace by simulated τ's

Good data-MC agreement \Rightarrow validation of $Z \rightarrow T^+T^-$ simulation 14

Systematic Uncertainties

Source	Error
$n_{ m SS}^{Bkg}$	
Same-sign statistics	17%
$ m QCD~OS/SS~ratio~r^{QCD}_{OS/SS}$	19%
$\textbf{Add-on} \; (r^W_{\text{OS/SS}} - 1) \cdot n^W_{\text{SS}}$	
Add-on statistics $n_{\rm SS}^W$	4%
$r_{\rm OS/SS}^W$ statistical error	11%
$M_{\rm T}$ dependence of $r_{\rm OS/SS}^W$	10%
Simulated backgrounds	
$tar{t} ext{ scales } (\mu_R,\mu_F)$	2%
$Z + \text{jets PDF}$, MLM match., scales (μ_R, μ_F)	13%
e efficiency	2-8%
μ efficiency	2%
au efficiency	4%
e energy scale	1-3%
e energy resolution	1%
au and jet energy scale	2-32%
Luminosity	3.4%

- Dominant uncertainties from:
 - data-driven bkg estimation (control-sample stat. & extrapol.)
 - jet and **T** energy scales

Systematic Uncertainties

Energy apple uncertainties		Jet/ τ energy scale	
• Energy scale uncertainties.		plus	minus
	$A/H/h \rightarrow \tau^+ \tau^- (m_A = 120 \text{ GeV})$	17.0%	-14.0%
	$Z \rightarrow \tau^+ \tau^- + jets$	31.7%	-21.0%
	$Z \rightarrow e^+e^-$ or $\mu^+\mu^-$ +jets	23.2%	-8.0%
	tī	1.0%	-1.4%
	Single-t	1.3%	-1.8%
	Di-boson	1.9%	0.6%

- Include shape uncertainty of visible mass due to energy scales
- Cross-section uncertainties:

Sample	σ
Z/γ*+jets	4%
Ttbar	10%
Single Top	13%
Diboson	7%
W+jets(only bkg. estimation)	4%

Signal: 10-15% (gg \rightarrow A/H/h, bbA/H/h) dependent on m_A and tan β

• Total signal-efficiency uncertainty: 24% (15%) for 120 (200) GeV

 Shape analysis of visible mass distribution using profile likelihood approach:

• Toy MC's from bkg-only PDF \Rightarrow expected limit and error bands₁₇

Exclusion Limits in m_A-tanß Plane

m_A [GeV] 18

- First search for neutral MSSM Higgs bosons with 2010 ATLAS data (36 pb⁻¹)
- No significant excess observed (data: 206, bkg: 195 ± 33)
- Set 95% CL exclusion limits in m_A -tan β plane, reach down to

-
$$\tan\beta \sim 24$$
 for $m_A = 110-150$ GeV

- tan $\beta \sim 60-70$ for m_A = 250-300 GeV
- Limits extend to regions of parameter space not excluded by Tevatron and LEP searches
- More exclusive analyses (b tagging, N_{jet}, ...) may be promising with 2011 data