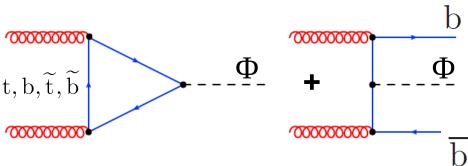
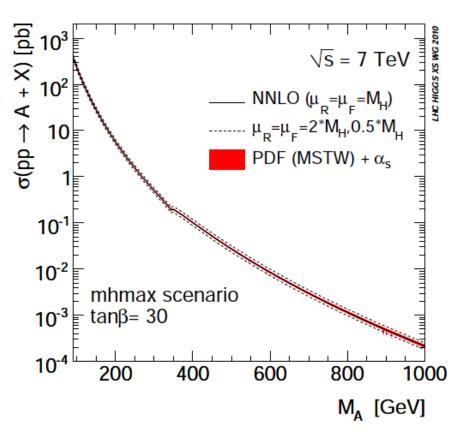


Neutral MSSM Higgs searches with CMS

M.Bachtis University of Wisconsin On behalf of the CMS Collaboration

MSSM Higgs bosons

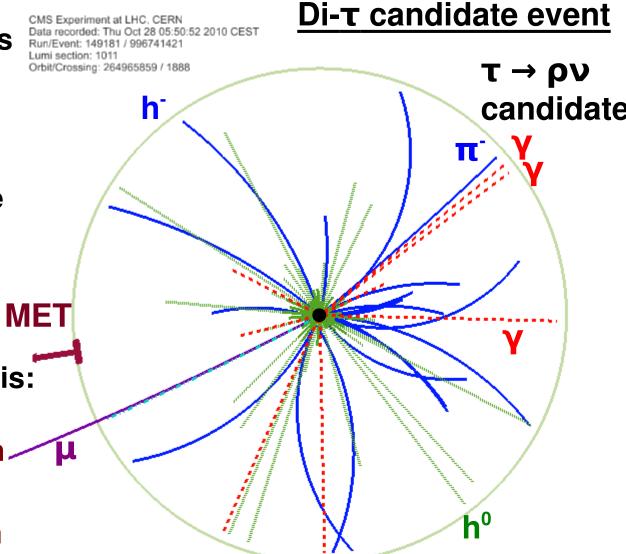

- 2 Higgs doublets
 - 5 Physical Higgs bosons
 - 2 CP even h, H, 1 CP odd A and 2 charged H⁺, H⁻
- •At tree level
 - Higgs sector described by $M_{A}^{}$, tan β
 - M_h < M_z
- Large loop corrections from SUSY parameters
 - M_h<133 GeV (for M_t=175 GeV, M_{SUSY}= 1TeV)
- Corrections depend on SUSY parameters
 - Fixed in benchmark scenarios
 - mh^{max} scenario used


MSSM Higgs bosons

•Two main production mechanisms

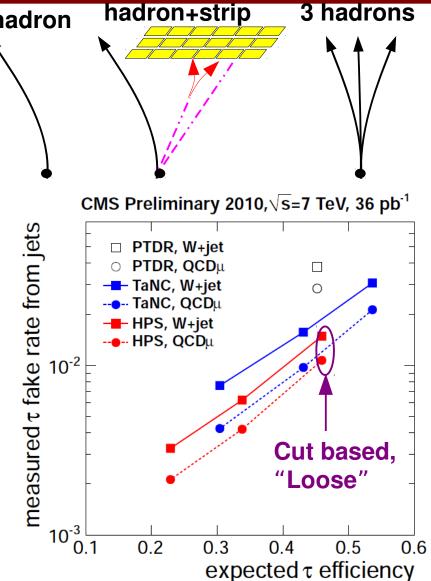
arXiv:1101.0593v2 [hep-ph]

- At large tan β:
 - Cross section enhanced
 - BR(A → ττ) → 10-15%
 - h+A or H+A degenerate
- •Φ → ττ is the ideal final state for the search!


Analysis Overview

- •Tau decays
 - + To light leptons (e, μ) and 2 neutrinos with BR ~35%
 - . To hadrons($\tau_{_h}$) and one neutrino with BR ~65 %
 - Dominated by π^+/K^+ , $\rho^+ \rightarrow \pi^+\pi^0$ and $\alpha_1 \rightarrow \pi^+\pi^-\pi^+(\pi^+\pi^0\pi^0)$
- •Final states with at least one light lepton preferred
 - Easier to trigger
 - Lower QCD background
- Events selected in the following final states
 - μ + τ_h : High signal yield, BR ~ 22.7%
 - + e + τ_h : High signal yield, BR ~ 23.1%
 - Larger background than $\mu + \tau_{h}$
 - e + μ : Very clean, but low branching ratio (~ 6%)
- $\boldsymbol{\cdot} Z \rightarrow \tau \tau$ standard candle important for validation of the methods
 - Complete Analysis performed and submitted for publication

Particle Flow(PF) Reconstruction

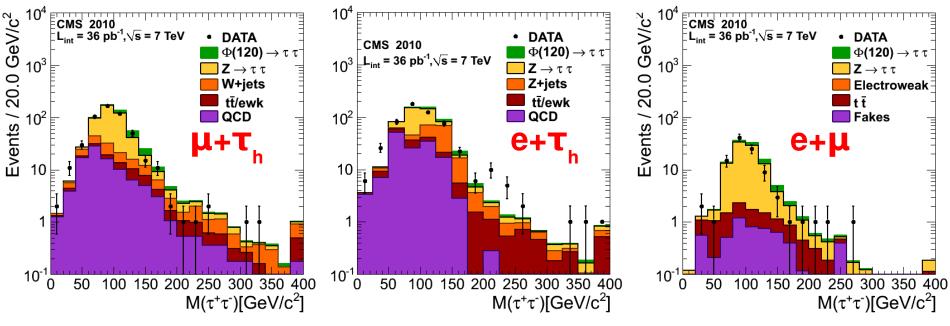

- Combines information from all sub-detectors
- •Provides unique event description
 - Particles!
- Particle candidates are combined to create composite objects
 - Taus, Jets and ME
 Missing ET
- •PF used in this analysis:
 - Tau + Jet reconstruction
 - Missing ET
 - Lepton Isolation

Tau Identification

- •Decay mode based Tau ID used hadron
- Combines Particle Flow candidates
- Builds individual decay modes
 - Accounts for conversions
 - strip of EM objects
- Energy measured only by the tau constituents
- Well commissioned in data
- Fake rates in di-jets
- Fake rates in W + jets and inclusive muon sample
- Data driven efficiency measurement on sample of real taus

Event selection

Trigger

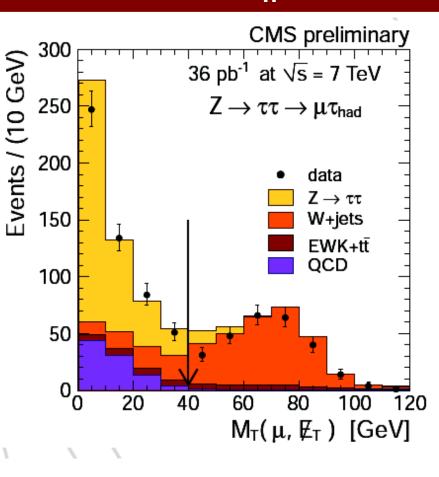

- $\mu + \tau_h$, $\mu + e$ triggered by a Single Muon Trigger
 - P_T >7 GeV @ L1 , 9- 15 GeV @ High Level Trigger(HLT)
- $e+\tau_h$, triggered by a Single Isolated Electron trigger
 - . E_{T} > 8 GeV @ L1, >12 GeV + isolation @ HLT
 - During last period of data taking tau leg of 15 GeV and loose isolation required @ HLT
- Offline selection
 - Muons and Electrons are required to be isolated and have P₁>15 GeV
 - Taus are required to be isolated and have P₋>20 GeV
 - W+jets/TTbar is suppressed by applying a transverse mass requirement
 - $M_T < 40 \text{ GeV} (e/\mu + \tau_h), M_T < 50 \text{ GeV} (e + \mu)$
 - Additional di-lepton veto for $e/\mu + \tau_{\rm h}$ final states
 - Vetoing isolated high quality $\mu\mu/\text{ee}$ pairs

Full τ⁺τ⁻ mass reconstruction

- Likelihood fit of visible tau momenta and neutrinos produced in tau decays
 - Using likelihood terms of tau decay kinematics and missing transverse energy
- Better discrimination compared to visible mass

Final Event selection (DATA with MC overlaid)

Expecting ~100 Φ events in M₂=120 , tan β = 30!


Post selection analysis

- Data driven background estimation
 - $Z \rightarrow \tau \tau$ irreducible :
 - Estimated from Z → µµ/ee measurement + NLO acceptance modeling + DATA/MC correction factors
 - Other backgrounds reducible
 - Remaining events estimated by data driven methods
- Simultaneous fit performed an all channels for the Higgs cross section
 - Data driven estimated yields and systematic uncertainties introduced as nuisance parameters
- All nuisance parameter values and uncertainties estimated from data

Background Estimation ($e/\mu + \tau_h$)

- $\cdot Z \rightarrow \tau \tau$ irreducible
- Dominant reducible backgrounds : QCD, W+jets
- QCD expected to have OS/SS ratio ~ unity
 - Measured by anti-isolating the muon/electron)
 - 1.06 +- 0.03 (μ+τ_h)
 - 1.06 +- 0.09 (e+τ_h)
- W transverse mass shape is used to extrapolate the W events in the signal region
 - Separately in OS, SS
- Small backgrounds estimated by MC (TTBar/Dibosons) or using τ → lepton fake rates (Z → ee/ μμ)

Results cross-checked with independent method

Background Estimation Input to the fit

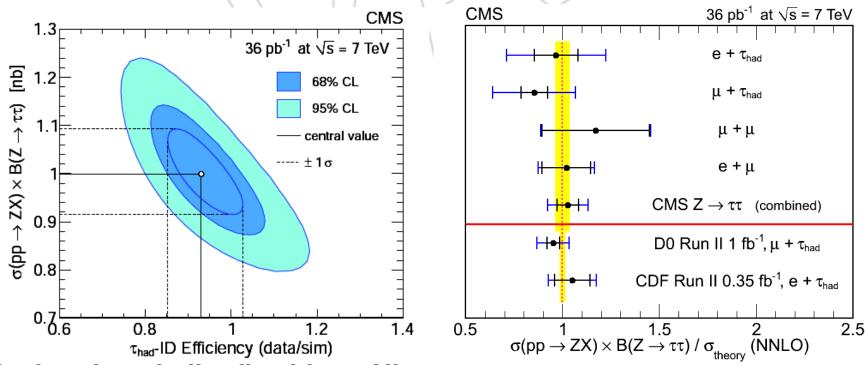
Process	μ+τ _h	e+τ _h	e+µ
Z → ττ	329 ± 77	190 ± 44	88 ± 5
TTBar	6 ± 3	2.6 ± 1.3	7.1 ± 1.3
$Z \rightarrow ee/\mu\mu$ +jets , jet fakes tau	6.4 ± 2.4	15 ± 6.2	-
Z → ee/µµ	12.9 ± 3.5	109 ± 28	2.4 ± 0.3
$W \rightarrow e/\mu \nu + jets$	54.9 ± 4.8	30.6 ± 3.1	
$W \rightarrow \tau \nu$	14.7 ± 1.3	7.0 ± 0.7	1.5 ± 0.5
QCD	132 ± 14	181 ± 23]
Di bosons	1.6 ± 0.8	0.8 ± 0.4	3.0 ± 0.4
Total	557 ± 79	536 ± 57	102 ± 5
Observed	517	540	101

• Z $\rightarrow \tau \tau$ from $\sigma(Z \rightarrow ee/\mu\mu)$, others with data driven extraction

Systematic uncertainties

Source	Uncertainty	Usage	
Lepton ID /trigger	0.2-2%	Efficiency correction factors	
Tau ID efficiency	24%	Efficiency correction factor	
Lepton Pt scale	1-2%	Shape uncertainties	
Tau energy scale	3%	Shape uncertainties	
Jet energy scale	3%	Shape uncertainties from MET	
Unclustered ET sca	ale 10%	Shape uncertainties from MET	
$\sigma(Z \rightarrow \mu \mu/ee)$	4%	$Z \rightarrow \tau \tau$ yield normalization	
Luminosity	11%		

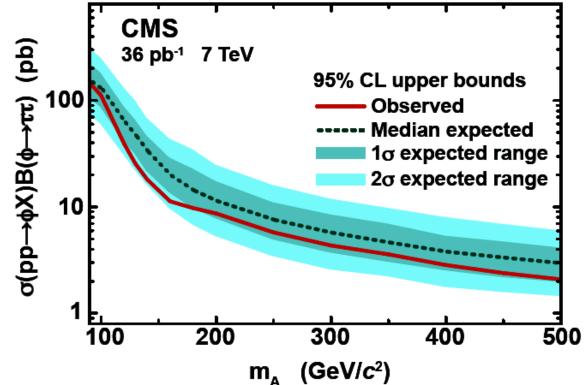
Tau ID efficiency dominates the systematics (measured in data sample of real taus \rightarrow low statistics)



Constrained Fit for the Higgs cross section

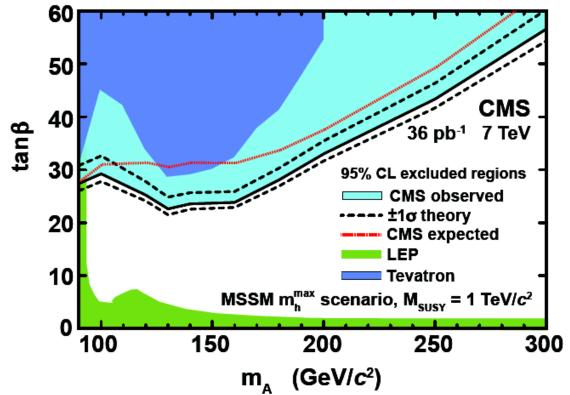
- .Constrained fit applied on the $M_{_{\rm TT}}$ spectrum for each Higgs mass hypothesis
 - QCD and Z \rightarrow ee/ $\mu\mu$ shapes taken from data
 - All other shapes from simulation
 - Agreement with data verified in sideband regions
 - Shapes from simulation allowed to vary within the scale uncertainties
 - Background estimated yields constrained by Gamma distributions and scale factors by Lognormal distributions
- $gg\Phi$ and $bb\Phi$ relative cross section ratio constrained to the expected value at $tan\beta = 30$ (different for each mass point)
- •Higgs width assumed for $\tan\beta = 30$
 - Negligible wrt experimental mass resolution
- •For $M_{\phi} > M_z$ Z peak self calibrates tau ID to higher precision (~7%)
- .For $M_{\phi} \sim M_{\gamma}$, e+mu channel dominates (lower systematics)

Establishing the $Z \rightarrow \tau \tau$ standard candle



 Performing similar fit without Higgs signal for the Z → tau tau cross section & Tau ID correction factor

- Includes also $Z \rightarrow \tau \tau \rightarrow \mu \mu$ final state
- •σ = 1.00 ± 0.05 (stat) ± 0.08 (syst) ± 0.04 (lumi) nb
- Cross section in agreement with NNLO prediction(0.972 nb)
- ArXiv:1104.1617(hep-ex) -Submitted to JHEP


Results of the Higgs search

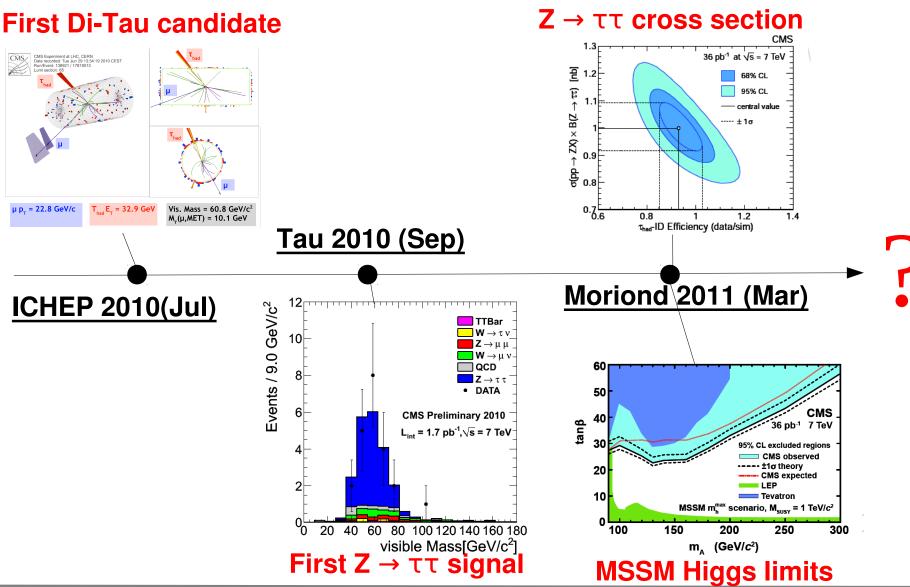
- •No excess is observed in the di-tau mass spectrum
- •95% CL upper limits are set to the Higgs production cross section
 - Using suggested methods in PDG
- •Limits reported with Bayesian integration method with flat prior in cross section ($\sigma > 0$)
 - Cross checked with profile likelihood (Bayesian more conservative)

Interpretation in the MSSM parameter space

•With 36 pb-1 CMS sets better limits than published Tevatron results

Improved sensitivity at low mass – New unexplored region at high mass

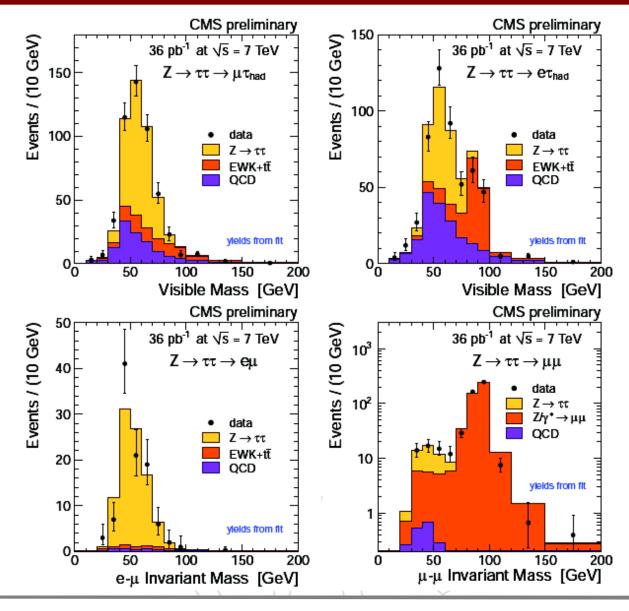
- Theoretical cross sections and uncertainties taken from LHC Higgs Cross section working group
 - 5 Flavor Scheme has been used
 - Tanβ > 60 not considered (theoretically unstable)


Conclusions

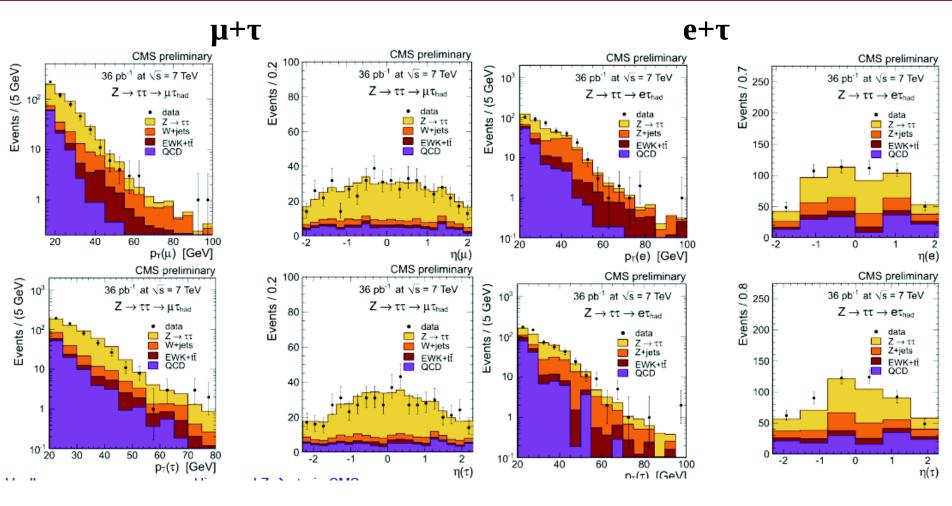
- A search for MSSM Neutral Higgs has been performed in CMS with 36 pb⁻¹ of data
- Experimental methods have been validated in Z → ττ cross section measurement
- •No evidence of signal observed
- •Upper limits have been set in Higgs production cross section and translated to M_{Λ} tan β plane
- •CMS results exclude previously unexplored region in MSSM parameter space

•ArXiv:1104.1619(hep-ex) - Submitted to Physical Review Letters

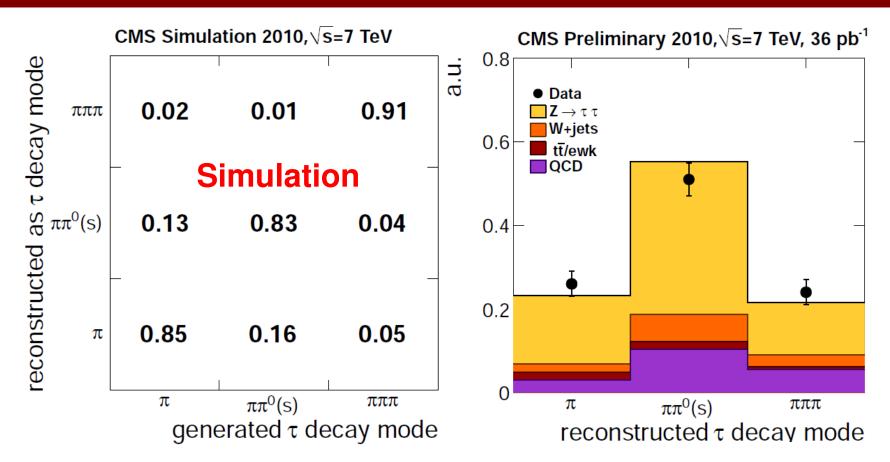
CMS Di-Tau Evolution...



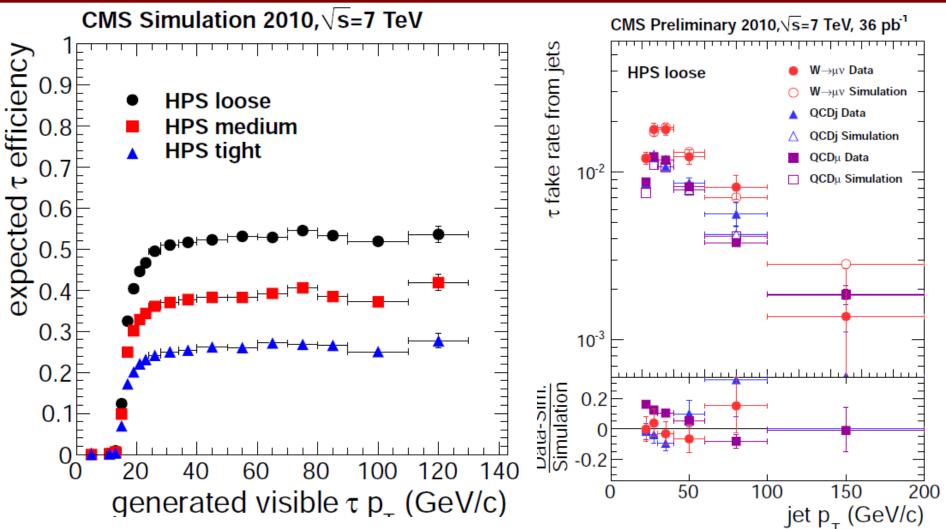
BACKUP SLIDES



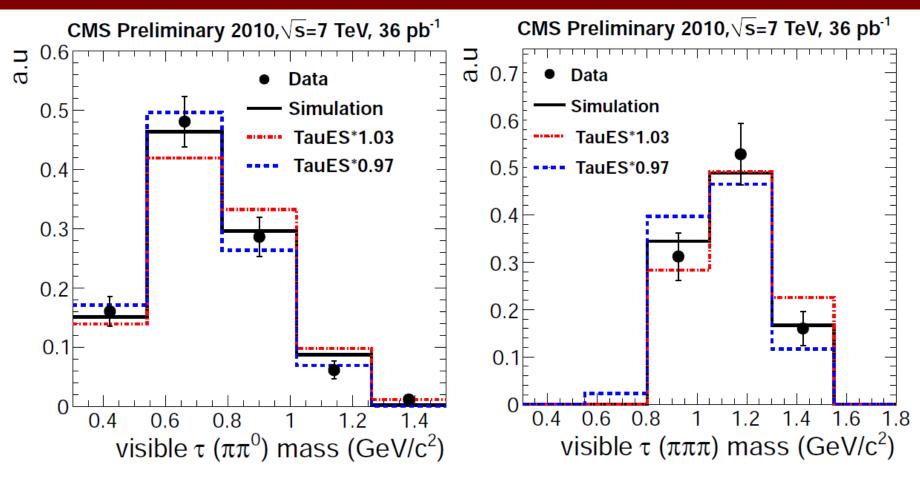
Visible Mass shapes after fit ($Z \rightarrow \tau \tau$)



Control Plots ($e/\mu + \tau_{h}$)


Tau ID performance (I)

•Tau ID algorithm reconstructs the proper decay modes



Tau ID performance(II)

Reconstructed Tau Mass

- Good agreement with simulation
- Precise reconstruction of the resonances

Tau ID efficiency measurement

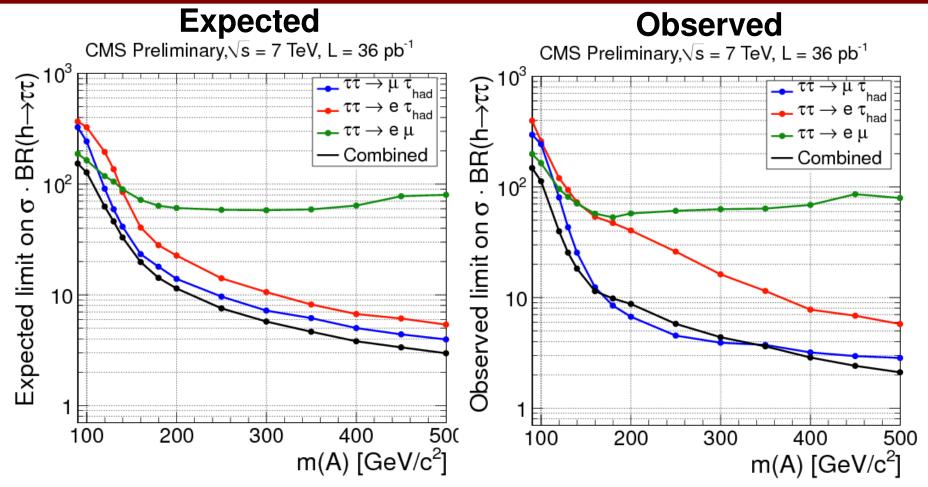
•Using Tag and probe on a sample of μ + PF Jet

•Spit Pass and Fail samples and perform simulated fit for the efficiency (Pass/ (Pass + Fail))

•Efficiency uncertainty ~ 23 % (Dominated by Fail sample statistics)

Limits calculation

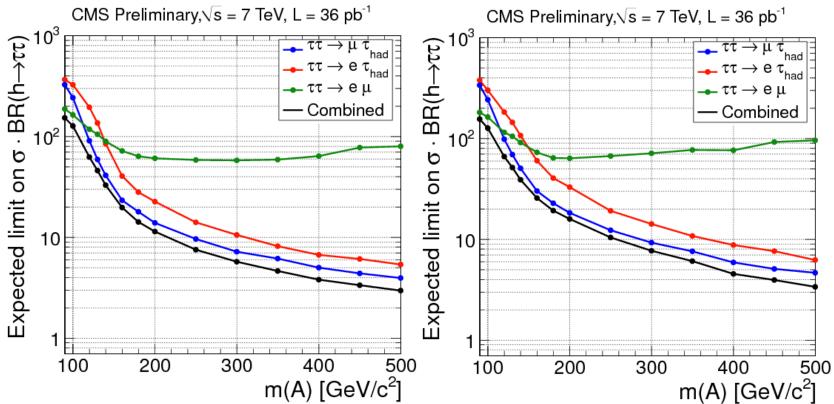
•95 % CL Limits calculated by Bayesian integration


$$\int_{\sigma=0}^{\sigma_{95\%}} \frac{\int \mathcal{L}(\text{data},\sigma,\nu) \,\pi(\sigma) d\nu}{\int \mathcal{L}(\text{data},\sigma',\nu') \,\pi(\sigma') d\sigma' d\nu'} d\sigma = 0.95$$

assuming flat prior for the cross section(σ >0)

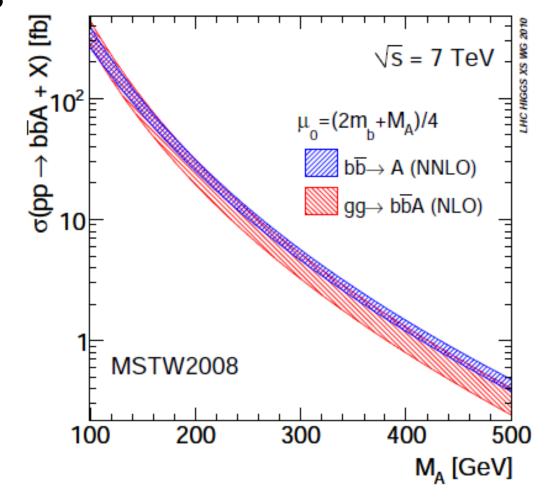
- Integration performed with Markov Chain MC over all nuisance parameters
- •Expected limits obtained by Toy MC (Median)
 - For each toy systematics produced based on the nuisance pdf
 - Shapes are generated with these systematics values

Limits : Channel by Channel



Expected Limits : Vis Mass vs SV fit Mass

Full Mass



Full reconstructed mass gives better expected limit

4FS vs 5FS

- •At low MA 4FS cross section higher
- •At large MA 5FS higher
- •Red band has only scale uncertainties for 4FS

