Search for light CP-odd and charged Higgs bosons at ATLAS

Martin Flechl on behalf of the **ATLAS** Collaboration LPCC Workshop, Apr 11, 2011

Albert-Ludwigs-Universität Freiburg

Outline

- H+ with leptonic τ decays:
 - Introducing and testing new discriminating variables
- H+ searches with hadronic τ decays
 - Test of data-driven background estimates
- $a_1 \rightarrow \mu \mu$
 - Limits on cross section times branching ratio

Charged Higgs boson

Charged Higgs bosons at ATLAS

- Large cross section possible for $m_{H_{+}} < m_{t}$
- Dominant in the MSSM: $H^+ \rightarrow \tau \nu$ $[m_{H^+} < m_t]$

 Four channels can be investigated:
 → ATLAS studies all of them

pp→tt, t→bH+	Н	qq
''	Н	
''	Λ	qq
''	Λ	

M. Flechl, 11/4/2011: Search for a1 and H+ at ATLAS

H+ with leptonic τ decays, W \rightarrow qq

- Event selection:
 - =1 electron/muon (trigger-matched),
 - >=4 jets, out of which =2 b-tagged,
 - $p_{T}(miss) > 40$ GeV,
 - $100 < m_{jjb} [GeV] < 250.$

MC vs data

Cuts	Data	tī	Single	Z+jets	W+jets	Di-boson	∑ MC
			top-quark				
Trigger	11082387	1943.3	606.3	7.4×10^{4}	4.3×10^{5}	628.8	5.1×10^{5}
Exactly 1 lepton	589664	1202.5	393.5	3.1×10^4	3.1×10^{5}	404.7	3.4×10^{5}
At least 4 jets	4794	770.0	54.4	409.3	1433.8	22.1	2690
Exactly 2 <i>b</i> -jets	226	184.1	7.4	0.9	7.0	0.2	200
$p_T^{\text{miss}} > 40 \text{ GeV}$	131	124.2	4.7	0.2	4.4	0.1	134
Top mass window	119	110.4	3.3	0.2	3.3	0.1	117
	Disagreem	ent in fir	st three rov	ws because	e QCD is n	on-negligi	ble there

H+ with leptonic τ decays, W \rightarrow lv

- Event selection:
 - =2 leptons ($ee/\mu\mu/e\mu$; opposite sign; one is trigger-matched),
 - >=2 jets,
 - ee/μμ:
 - $|m_{ll}-m_{Z}| > 10 \text{ GeV}, m_{ll} > 15 \text{ GeV},$
 - $p_{T}(miss) > 40 \text{ GeV}.$
- MC vs data

Cuts	Data	tī	Single	Z+jets	W+jets	Di-boson	\sum MC
			top-quark				
Trigger	11082387	1943.3	606.3	7.4×10^{4}	4.3×10^{5}	628.8	5.1×10^{5}
Exactly 2 leptons	21283	109.6	11.1	2.0×10^{4}	3.2	72.3	2.0×10^{4}
At least 2 jets	1595	96.8	5.6	1529.7	0.5	28.3	1661
Z veto, p_T^{miss}/H_T	105	79.5	4.4	9.0	0.3	2.1	95

- eµ:
 - H_T(leptons, jets)>130 GeV.

6

$\cos \theta^*$

- UNI FREIBURG
- For $W \rightarrow lv$, angle of lepton momentum wrt the helicity axis in the W rest frame:

$$\cos \theta_l^* = \frac{2m_{bl}^2}{m_{top}^2 - m_W^2} - 1 \simeq \frac{4 \ p^b \cdot p^l}{m_{top}^2 - m_W^2} - 1$$

Used here because it

- allows discrimination between direct leptons, and $\tau \rightarrow lvv$,
- without much sensitivity to the H⁺ mass.

M. Flechl, 11/4/2011: Search for a1 and H+ at ATLAS

$m_{T}(H)$ for bqqbH⁺

$m_{T 2}^{H}$ for blvbH⁺

- Definition for tt->b $W_1 bW_2$ (or H⁺) with W_1 (or H⁺) -> τv , τ ->lvv and W_2 ->lv
- Maximize: $m_{T2}^H = \max_{\{constraints\}} [m_T^H(\vec{p}_T^{H^+})]$ with

$$(m_T^H(\vec{p}_T^{H^+}))^2 = \left(\sqrt{m_{\text{top}}^2 + (\vec{p}_T^{H^+} + \vec{p}_T^{b})^2} - p_T^b\right)^2 - \left(\vec{p}_T^{H^+}\right)^2 \underset{\text{sec}}{\approx}$$

- 6 constraints, 8 variables: p^{H+}, p^ν
- Again:
 - $m_W < m_{T2}^H < m_t$ [background],
 - $m_{H^+} < m_{T2}^H < m_t [signal]$

constraints: ZW $(p^{H^+} + p^b)^2 = m_{\rm top}^2,$ $(p^{\ell^-} + p^{\bar{\nu}_{\ell}})^2 = m_W^2,$ $(p^{\ell^-} + p^{\bar{\nu}_{\ell}} + p^{\bar{b}})^2 = m_{\rm top}^2,$ $(p^{\bar{\nu}_{\ell}})^2 = 0,$ $\vec{p}_T^{H^+} - \vec{p}_T^{\ell^+} + \vec{p}_T^{\bar{\nu}_\ell} = \vec{p}_T^{\text{miss}}$ **ATLAS** Preliminary (Simulation) $500 \stackrel{\frown}{=} \operatorname{Br}(t \rightarrow bH^{+}) = 0 (SM)$ 400 Br(t \rightarrow bH⁺) = 15% m(H⁺) = 130 GeV 300[†] Generator level 200 100 40 60 80 100120140160180200 Generalized transverse mass m^H_{T2} [GeV]

Results: $\cos \theta^*$

Solid: BR(t→bH+)=15%, mH+=130 GeV; statistical uncertainties only

URG

B

Results: $m_T(H)$, $m_{T_2}(H)$

H+ with hadronic τ decays, W \rightarrow qq

- Event selection:
 - =1 τ jet with $p_T > 20$ GeV (trigger-matched),
 - >=4 jets (>=1 b-tag),
 - no isolated lepton,
 - $E_{T}(miss) > 20 \text{ GeV},$
 - $E_{T}(miss) / \sqrt{E_{T}(sum)} > 3 \text{ GeV}^{\frac{1}{2}}$,
 - $120 < m_{jjb} [GeV] < 240,$
 - $m_T = \sqrt{2p_T^{\tau} p_T^{\text{miss}} (1 \cos \Delta \phi)}$ (no cut).

Data-driven estimates

	Expected					Observed
	True τ jets	Jet $\rightarrow \tau$ fakes	$e \rightarrow \tau$ fakes	QCD	Sum	Data
All events	$10.8 \pm 3.1^{+3.2}_{-2.4}$	$1.7 \pm 0.2 \pm 0.3$	$1.1 \pm 0.0 \pm 0.4$	$18.8 \pm 6.2 \pm 3.0$	$32 \pm 9 \pm 7$	33
$m_T > 70 \text{ GeV}$	$4.7 \pm 1.3^{+1.4}_{-1.1}$	$1.2\pm0.2\pm0.2$	$0.7\pm0.0\pm0.3$	$11.3 \pm 3.7 \pm 1.7$	$18 \pm 5 \pm 4$	17

Event selection:=1 lepton (trigger-matched),

H+ with hadronic τ decays, W \rightarrow lv

- =1 τ jet with $p_T > 20$ GeV (opposite charge to lepton)
- >= 2 jets, at least one of them b-tagged,
- $E_{T}(sum) > 200 \text{ GeV},$
- $E_{T}(miss) > 60 \text{ GeV}.$

Data-driven estimates

	Expected					
	True τ jetsJet $\rightarrow \tau$ fakes $e \rightarrow \tau$ fakesSum					
Events	$6.9 \pm 0.3 \pm 1.4$	$7.9 \pm 1.1 \pm 1.6$	$0.65 \pm 0.01 \pm 0.04$	$15.5 \pm 1.4 \pm 3.0$	11	

IBUR

Events with $e \rightarrow \tau$ or jet $\rightarrow \tau$ fakes are

Backgrounds with fake τ jets

estimated by

- measuring fake rate (function) in data (Z \rightarrow ee and γ +jet events),
- using simulation, but replacing the τ ID with the measured values
- Background to H+ searches: Good agreement with MC expectation iet $\rightarrow \tau$

		J	
Selection	Sample	Fake rate prediction [num. of events]	MC prediction [num. of events]
τ +jets	tī	$1.7 \pm 0.2 \text{ (stat)} \pm 0.3 \text{(syst)}$	1.9 ± 0.2 (stat)
τ +lepton	tī	6.7 ± 1.0 (stat) ± 1.4 (syst)	6.0 ± 0.2 (stat)

e→τ	
-----	--

Selection	Sample	Fake rate prediction [num. of events]	MC prediction [num. of events]
τ +jets	tī	$1.08 \pm 0.01(\text{stat}) \pm 0.38(\text{syst})$	$1.50 \pm 0.09(\text{stat})$
τ +lepton	tī	$0.65 \pm 0.01(\text{stat}) \pm 0.04(\text{syst})$	$0.79 \pm 0.08(\text{stat})$

QCD jets estimate

 Take shape of the MET distribution for QCD from a control region (requiring a loose τ and rejecting a tight tau)

- Perform a fit to data using this QCD shape; and the ttbar/W+jets shape
- The normalization is a result of the fit
- Estimate for τ+jets: 57±19% of events after full event selection is from QCD jets
- Will be less critical in 2011 when we can afford tighter cuts

Embedding

- Idea: Select a pure sample of μ +jets (tt, W+jets, s-top) events
- Remove muon from event (tracks, calorimeter deposition)
- Replace with a simulated tau with the same (rescaled) properties
- Use these events instead of MC to estimate true-τ background
- au+jets: Normalize m_T distribution to data for $30 < m_T < 70$ GeV (after subtracting results from all other data-driven estimates)
- Currently huge statistical uncertainties
 - Looking forward to 500pb⁻¹ in summer...

$H^+ \rightarrow \tau$ (had) Results

- Shape comparison after all selection cuts
- Large statistical uncertainties
 - Results compatible with the Standard Model.

BURG

Light CP-odd Higgs boson

NMSSM & $a_1 \rightarrow \mu \mu$

- NMSSM Higgs content: h_1 , h_2 , h_3 , a_1 , a_2 , h^+ , h^- .
- Ideal Higgs scenario: m_{a1} < 2m_B
 - Escapes the LEP limit on $a_1 \rightarrow bb$
 - Could account for g-2 discrepancy (for 9.2<m_{a1} [GeV]<12)
 - Could explain (disputed) discrepancy in $\Gamma(\Upsilon \to \tau^+ \tau^-)/\Gamma(\Upsilon \to \mu^+ \mu^-)$
 - If $h_1 \rightarrow a_1 a_1$ is large, searches could miss the SM Higgs (even below 114 GeV).
 - Important parameters: $\tan \beta$; $\cos \theta_A$ (non-singlet component of a_1)
 - $\sigma(gg \rightarrow a_1) \cdot BR(a_1 \rightarrow \mu\mu)$, example values:
 - 3 pb ($m_{a1} = 8$ GeV, $\cos \theta_A = 0.1$, $\tan \beta = 10$)
 - 300 pb (same, but $\cos \theta_A = 1$)

ത്ത്ത

 a_1

$a_1 \rightarrow \mu \mu$ candidate selection

- Find muon pair with $4.5 < m_{\mu\mu}$ [GeV]<14, opposite sign, $p_T(\mu) > 4$ GeV
- Build likelihood ratio based on dimuon vertex fit quality and μ isolation
 - PDFs based on data in $m_{\mu\mu}$ Upsilon sideband regions for signal, and flat sideband regions for background

Z

Observed dimuon mass spectrum

- Set Limits (no excess observed)
 - Count signal candidates in $m_{\mu\mu}$ bins, correct with selection effiency
 - Systematic uncertainties on efficiency/luminosity
 - Use profile likelihood method to set limits on m_{µµ} in regions
 6-9 and 11-12 GeV [exclude 9-11 GeV until we have precise knowledge on the Y rates]
 - Presented as power-constrained limit (→ next slide)

Limit on $\sigma(gg \rightarrow a_1 \rightarrow \mu\mu)$

Figure 9: Upper limits on $\sigma(gg \to a_1) \cdot BR(a_1 \to \mu^+\mu^-)$ at 95% confidence level. The black solid line is the observed upper limit, presented as a 16% power constrained limit using asymptotic formulas, while the dashed red line corresponds to the expected limit, assuming absence of a signal. The green/yellow areas represent the $\pm 1\sigma/+2\sigma$ uncertainties on the expected limit. The -2σ band is not displayed because it systematically goes to zero in this method.

2

Conclusions and outlook

- Searches for charged Higgs bosons ready for 2011 data
 - Studies on four channels shown
 - Variables and methods commissioned
- First direct limits on $a_1 \rightarrow \mu \mu$
 - already now cutting into the NMSSM parameter space

References

UNI FREIBURG

[1] A Search for a Light CP-Odd Higgs Boson Decaying to $\mu^+\mu^-$ in ATLAS, ATLAS-CONF-2011-020

[2] Study of discriminating variables for charged Higgs boson searches in tt events with leptons, using 35pb⁻¹ of data from the ATLAS detector, ATLAS-CONF-2011-018

[3] Data-driven estimation of the background to charged Higgs boson searches using hadronically-decaying τ final states in ATLAS, ATLAS-CONF-2011-051

[4] E. Gross and O. Vitells, Transverse mass observables for charged Higgs boson searches at hadron colliders, Phys. Rev. D81 (2010) 055010

Backup Slides

Object reconstruction:

- $\tau \rightarrow$ leptons:
 - Jets: pT>20 GeV, |η|<2.5
 - Leptons: pT>20 GeV, $|\eta^{\mu}| \le 2.5$ or $|\eta^{e}|$ in 0-1.37/1.52-2.47
- $\tau \rightarrow$ hadrons:
 - Jets: pT>20 GeV, |η|<4.9
 - Leptons: pT>20 GeV, |η^μ|<2.5 or |η^e| in 0-1.37/1.52-2.47 for lepton veto: pT>10 GeV

Slide from Yi Yang

Several previous searches for a₁

- Basically exclude m_{a1} < 2m_τ
- Constrain 2m_τ < m_{a1} < 2m_B

Experiment	Year	Mode	Ref.
BaBar	2009	$Y \rightarrow \gamma a_1$	arXiv : 0905.4539
DO	2009	$h \rightarrow aa \rightarrow 2\tau$ + 2μ ; 4μ	arXiv : 0905.3381
ALEPH	2010	$h \rightarrow aa \rightarrow 4\tau$	arXiv : 1003.0705

And even more recent:

- arXiv:1007.4646 [hep-ex] (BaBar ,,Ups(1S)-> gamma+invis" [i.e. A0->chichi])
- https://oraweb.slac.stanford.edu/pls/slacquery/BABAR_DOCUMENTS.DetailedIndex?P_BP_ID=5939 (BaBar ,,Upsilon (2S) and Upsilon (3S) physics")

Slide from Yi Yang

ALEPH's latest result (arXiv:1003.0705)

- 4 tau final state ($h \rightarrow a_1 a_1 \rightarrow \tau \tau + \tau \tau$)
- Only low tanβ points are favored
- The production cross section of a is dropping from 5 x 10⁵ to ~ 10³⁻⁴ pb (for tanβ = 1, 2) for M_a = 10 GeV

