Resonances in leptonic channels and llgg contact interactions in ATLAS

- Lepton reconstruction
 and identification
- $\ell\ell$ and $\ell\nu$ data
- Models
- Limits

Grensbie

LPCC on BSM, 11-13 April 2011, CERN

>Search for neutral ($\ell\ell$) and charged ($\ell\nu$) resonances ($\ell=e,\mu$)

>Analyse full 2010 data set

- > ll: reprocessed data: ~40/pb
- > lv: non-reprocessed data: ~36/pb

>Main observable:

- $\succ \mathcal{U}$: invariant mass $m_{\mathcal{U}}$
- $\succ \ell v$: transverse mass m_T

$$m_{ll} = \sqrt{E_{ll}^2 - ||\mathbf{p}_{ll}||^2}$$
$$m_{\rm T} = \sqrt{2p_{\rm T} E_{\rm T}^{\rm miss} (1 - \cos \varphi_{l\nu})}$$

> Main challenge: reconstruct and identify *very* high p_T leptons

Electron reco and ID

Reconstruction

- sliding window clustering algorithm
- |η| < <mark>2.4 (e</mark>v) or 2.47 (ee) (exclude 1.37-1.52)
- correct energy or exclude clusters close to dead readout

Energy resolution: σ(E)/E = **1.1%** (barrel) **1.8%** (endcaps)

Identification

- $\cdot p_{T} > 25 GeV$
- «medium» identification
- •Pixel hit in first layer
- z₀< 5 mm, d₀< 1 mm (ev)
- isolation criterion: $\Sigma E_T(\Delta R < 0.4) < 10 \text{ GeV (ev)}$

Muon reconstruction

Muons

- •«combined» reconstruction: ID track + MS track
- |η| < 1.05 (μν) or 2.4 (μμ)
- p_T > 25 GeV
- •ID: at least 1 pixel hit and 6 SCT hits + TRT
- ·MS: at least 2 hits in each of 3 layers, >0 ϕ hit, use only well aligned chambers
- z_0 < 1 (µµ) or 5 (µv) mm, d_0 < 0.2 (µµ) or 1 (µv) mm
- isolation criterion: $\Sigma p_T(\Delta R < 0.3)/p_T(\mu) < 0.05$

Average momentum resolution: 20% at 1 TeV

Event selection

ll

- Single lepton trigger(s)
- Primary vertex with >2 tracks
- •At least 2 leptons
- •Opposite charges (muons)

Efficiency for 1 TeV Z'_{SSM} : 60% (ee), 40% ($\mu\mu$) lv

- Single lepton trigger(s)
- Primary vertex with >2 tracks
- •Exactly one lepton
- ·E_T^{miss} > 25 GeV
- ·E_T^{miss} > 0.6 E_T (electron)

Efficiency for 1.5 TeV W'_{SSM}: 53% (ev), 38% (μν)

Lepton kinematics (ll)

6

Lepton kinematics (lv)

QCD evaluation

Data driven, 3-4 methods combined and extrapolated to signal region (power law fit above Z region):

ll invariant mass

Data well described by Standard Model No excess at large $m_{\ell\ell}$

lv transverse mass

Data well described by Standard Model No excess at large $m_{\rm T}$

New gauge bosons

« Standard » Minimal gauge coupling

- •SSM benchmark Z', W'
- E_6 motivated Z'

Narrow width: few% of M Leptonic BR: 3-8%

LPCC BSM-meeting 2011

« Excited » Magnetic gauge coupling

Effective model Z*, W*

Narrow width: 3.4% of M Leptonic BR: 8%

M. V. Chizhov, V. A. Bednyakov, and J. A. Budagov, *Proposal for Chiral-Boson Search at LHC via Their Unique New Signature*, Physics of Atomic Nuclei **71** (2008) 2096–2100.

M. Chizhov and G. Dvali, Origin and Phenomenology of Weak-Doublet Spin-1 Bosons, arXiv:hep-ph/0908.0924 [hep-ph].

Most general Lagrangian = several parameters ⇒ choose a "benchmark" model: Left-Left Isoscalar Model (LLIM)

$$\frac{d\sigma}{dm_{\mu\mu}} = \frac{d\sigma_{DY}}{dm_{\mu\mu}} - \eta \frac{F_I}{\Lambda^2} + \frac{F_C}{\Lambda^4}$$

 F_{I} = interference term F_{c} = pure CI term

 Λ = energy scale

(compositeness: bound constituents)

LPCC BSM-meeting 2011

η = -1 constructive interference η = +1 destructive interference

μμ invariant mass

Limits extraction

Theory parameter = M (new boson) or $1/\Lambda^2$

ll

•Normalize background to **data** in 70-110 GeV window

•Fit the **shape** of $m_{\ell\ell}$ distrib. above 110 (150) GeV

•Only mass dependent uncertainties (*shape*)*

Use Bayesian statistics

ℓv

•Normalize background with σB and data sample luminosity

•Count events above m_T thresholds ($M_{W',W^*}/2$)

 Normalization uncertainties dominate (*level*)

•Use **CL**_s statistics

Systematics

Ζ',	1	TeV

Source	diele	ectrons	dimuons			
	Z' signal	Z' signal background		background		
Normalization	5%	5%	5%	5%		
PDFs	6%	6%	6%	6%		
QCD K-factor	3%	3%	3%	3%		
Weak K-factor	NA	4.5%	NA	4.5%		
Efficiency	-	-	3%	3%		
Resolution	-	-	3%	3%		
Total	9.4%	9.5%	9.4%	10.4%		

	$\varepsilon_{\rm si}$	ig	N	, bg
Source	$e\nu$	μu	$e\nu$	μu
Missing $E_{\rm T}$ scale	0.1%	0.1%	1.1%	3.4%
Trigger efficiency	1.0%	0.7%	1.0%	0.7%
Reco. and id. efficiency	3.6%	1.6%	3.6%	1.3%
Isolation leakage	2.7%		3.4%	
Energy/momentum resolution	0.1%	0.4%	2.4%	3.1%
Energy/momentum scale	0.8%	0.1%	(6.6%)	0.1%
Correlated misalignment		0.6%		3.3%
QCD background			2.2%	(7.7%)
Monte Carlo statistics	1.7%	1.6%	2.2%	16.6%
Cross section (shape/level)	0.7%	0.7%	(8.5%)	7.7%
Isolation	1.5%	1.5%	1.0%	1.0%
Other	0.2%	0.4%	0.4%	0.9%
All	5.3%	3.0%	12.6%	20.7%

W', 1.5 TeV

Destructive

Constructive

Mass of SSM	Z', W' [TeV]
ee: 0.957	ev: 1.37
μμ : 0.834	μν : 1.29
<i>ll</i> : 1.048	<i>l</i> v: 1.49

 Mass of Z*, W* [TeV]

 ee: 1.058
 ev: 1.26

 μμ: 0.946
 μν: 1.12

 ll: 1.152
 lv: 1.35

With ~40/pb of data, ATLAS has set limits:

- at the level of Tevatron: Z', or above: W'
- first ones on new models: Z*, W*
- · world's best on $qq\mu\mu$ contact interactions

Coming soon: increased luminosity, improved acceptance (calorimeter readout, MS alignment), more models Stay tuned !

Many thanks to the organizers!

<u>References:</u> The ATLAS Collaboration, arXiv:1103.3864, submitted to PLB The ATLAS Collaboration, arXiv:1103.6218, submitted to PLB

Extra slides

Tevatron limits

Mass of SSM gauge boson [TeV] CDF ee: 0.963 (2.5/fb) D0 ee: 1.023 (5.4/fb) CDF μμ: 1.071 (5.3/fb)

CDF ev: 1.12 (5.3/fb) D0 ev: 1.00 (1/fb) $\Lambda_{LL}^{-}, \Lambda_{LL}^{+} \text{ of } qq\ell\ell C.I. [TeV]$

CDF ee: 5.9, 3.7 (450/pb)

D0 ee: 4.2, 3.3 (120/pb)

CDF µµ: 4.2, 2.9 (110/pb)

Mass of E₆ Z' [TeV]

Combined (ll) limits:

	Ψ	Ν	η	I	5	χ
Observed	0.738	0.763	0.771	0.842	0.871	0.900
Expected	0.837	0.860	0.866	0.922	0.945	0.965

Event counts

$m_{e^+e^-}$ [GeV]	70-110	110 - 130	130 - 150	150 - 170	170 - 200	$m_{\mu+\mu-}$ [GeV]	70-110	110-130	130 - 150	150 - 170	170 - 200
Z/γ^*	8498.5 ± 7.9	104.9 ± 3.3	36.8 ± 1.3	19.4 ± 0.7	14.7 ± 0.6	Z/γ^*	7546.7 ± 7.1	98.4 ± 3.1	33.4 ± 1.1	17.2 ± 0.6	12.8 ± 0.5
$t\bar{t}$	8.2 ± 0.8	2.8 ± 0.3	2.1 ± 0.2	1.7 ± 0.2	1.7 ± 0.2	$t\bar{t}$	6.0 ± 0.6	2.4 ± 0.3	1.7 ± 0.2	1.2 ± 0.1	1.2 ± 0.1
Diboson	12.1 ± 0.9	1.0 ± 0.2	0.7 ± 0.2	0.5 ± 0.2	0.5 ± 0.1	Diboson	10.0 ± 0.5	0.8 ± 0.1	0.6 ± 0.0	0.5 ± 0.0	0.4 ± 0.0
W + jets	6.0 ± 1.8	3.7 ± 1.2	1.2 ± 0.5	1.3 ± 0.5	1.2 ± 0.4	W + jets	0.3 ± 0.2	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
QCD	32.1 ± 7.1	8.4 ± 1.8	5.5 ± 0.8	3.2 ± 0.6	2.8 ± 0.8	QCD	0.1 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
Total	8557.0 ± 10.8	120.9 ± 4.0	46.4 ± 1.6	26.2 ± 1.1	20.8 ± 1.1	Total	7563.0 ± 7.2	101.6 ± 3.1	35.7 ± 1.2	18.9 ± 0.7	14.4 ± 0.5
Data	8557	131	49	20	18	Data	7563	101	41	11	11
$m_{e^+e^-}$ [GeV]	200-240	240 - 300	300-400	400-800	800-2000	$m_{\mu+\mu-}$ [GeV]	200-240	240-300	300-400	400-800	800-2000
Z/γ^*	9.5 ± 0.4	6.0 ± 0.3	3.2 ± 0.1	1.6 ± 0.1	0.1 ± 0.0	Z/γ^*	7.8 ± 0.3	5.1 ± 0.2	2.5 ± 0.1	1.3 ± 0.1	0.1 ± 0.0
$t\bar{t}$	1.2 ± 0.1	0.9 ± 0.1	0.5 ± 0.0	0.2 ± 0.0	0.0 ± 0.0	$t\bar{t}$	1.0 ± 0.1	0.7 ± 0.1	0.4 ± 0.0	0.1 ± 0.0	0.0 ± 0.0
Diboson	0.4 ± 0.1	0.3 ± 0.1	0.2 ± 0.1	0.1 ± 0.1	0.0 ± 0.0	Diboson	0.3 ± 0.0	0.2 ± 0.0	0.2 ± 0.0	0.1 ± 0.0	0.0 ± 0.0
W + jets	1.1 ± 0.4	0.3 ± 0.1	0.2 ± 0.1	0.2 ± 0.1	0.0 ± 0.0	W + jets	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
QCD	1.9 ± 0.8	1.3 ± 0.7	0.8 ± 0.4	0.5 ± 0.2	0.1 ± 0.1	QCD	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
Total	14.1 ± 1.0	8.8 ± 0.7	4.8 ± 0.5	2.7 ± 0.3	0.2 ± 0.1	Total	9.1 ± 0.4	6.0 ± 0.2	3.0 ± 0.1	1.5 ± 0.1	0.1 ± 0.0

m		1	esig	1	V _{sig}		
[GeV]	decay	W'	W*	W'	W*	$N_{\rm bg}$	$N_{\rm obs}$
500	$e\nu$	0.556 ± 0.024	0.530 ± 0.022	349 ± 30	208 ± 18	21.5 ± 2.0	24
500	μu	0.339 ± 0.008	0.265 ± 0.005	212 ± 17	104 ± 8	20.3 ± 1.1	16
750	$e\nu$	0.565 ± 0.025	0.520 ± 0.022	65.8 ± 4.8	39.6 ± 3.5	4.05 ± 0.35	6
750	μu	0.362 ± 0.009	0.257 ± 0.005	42.1 ± 2.7	19.6 ± 1.5	5.48 ± 0.44	0
1000	$e\nu$	0.562 ± 0.025	0.516 ± 0.022	17.1 ± 1.4	10.5 ± 1.0	1.11 ± 0.11	1
1000	μu	0.381 ± 0.010	0.264 ± 0.006	11.6 ± 0.9	5.4 ± 0.5	2.05 ± 0.25	0
1950	$e\nu$	0.552 ± 0.026	0.505 ± 0.023	5.23 ± 0.51	3.22 ± 0.42	0.400 ± 0.054	0
1250	μu	0.386 ± 0.011	0.255 ± 0.006	3.66 ± 0.33	1.63 ± 0.20	1.01 ± 0.17	0
1500	$e\nu$	0.530 ± 0.028	0.488 ± 0.025	1.71 ± 0.21	1.06 ± 0.17	0.159 ± 0.020	0
1300	μu	0.383 ± 0.012	0.252 ± 0.006	1.24 ± 0.14	0.54 ± 0.08	0.62 ± 0.13	0
1750	$e\nu$	0.503 ± 0.027	0.482 ± 0.028	0.59 ± 0.09	0.37 ± 0.07	0.069 ± 0.009	0
1750	μu	0.360 ± 0.012	0.254 ± 0.007	0.43 ± 0.06	0.20 ± 0.04	0.47 ± 0.09	0

Isolation

W'/W* comparison

Angular distributions

 e^+

Highest m_{ee} candidate

ATLAS M₁₂ = 617 GeV EXPERIMENT p_{T1,2}=279, 276 GeV Run Number: 167576, Event Number: 22999252 Date: 2010-10-24 12:22:12 CEST η_{1,2}=1.22, 0.28 Φ_{1.2}=1.74, -1.40

Highest $m_{\mu\mu}$ candidate

LPCC BSM-meeting 2011

Run Number: 166198 Event Number: 17169487 Date: 2010-10-04, 20:20:19 CET

ATLAS

EXPERIMENT

Cells: Tiles, EMC

Electron identification

Туре	Description	Name				
Loose electron and photon cuts						
Acceptance of the detector	$ \eta < 2.47$ for electrons, $ \eta < 2.37$ for photons (1.37 < $ \eta < 1.52$ excluded)	-				
Hadronic leakage	Ratio of E_T in the 1st sampling of the hadronic calorimeter to E_T of the	R _{had1}				
	EM cluster (used over the range $ \eta < 0.8$ and $ \eta > 1.37$)					
	Ratio of E_T in the hadronic calorimeter to E_T of the EM cluster	R_{had}				
	(used over the range $ \eta > 0.8$ and $ \eta < 1.37$)					
Middle layer of the	Ratio in η of cell energies in 3 \times 7 versus 7 \times 7 cells.	R_{η}				
EM calorimeter	Lateral width of the shower	w2				
	Medium electron cuts (in addition to the loose cuts)					
Strip layer of the	Total lateral shower width (20 strips)	Wstot				
EM calorimeter	Ratio of the energy difference between the largest and second largest	Eratio				
	energy deposits over the sum of these energies					
Track quality	Number of hits in the pixel detector (at least one)	-				
	Number of hits in the pixels and SCT (at least seven)	-				
	Transverse impact parameter (<5 mm)	d_0				
Track matching	$\Delta\eta$ between the cluster and the track in the strip layer of the EM calorimeter	$\Delta \eta_1$				
	Tight electron cuts (in addition to the medium electron cuts)					
B-layer	Number of hits in the B-layer (at least one)					
Track matching	$\Delta \phi$ between the cluster and the track in the middle layer of the EM calorimeter	$\Delta \phi_2$				
	Ratio of the cluster energy to the track momentum	E/p				
TRT	Total number of hits in the TRT	-				
	(used over the acceptance of the TRT, $ \eta < 2.0$)					
	Ratio of the number of high-threshold hits to the total number of TRT hits	-				
	(used over the acceptance of the TRT, $ \eta < 2.0$)					

Preselection (lv)

0.15

Destructive

√s = 7 TeV

 $L dt = 42 \text{ pb}^{-1}$

ATLAS Preliminary

0.25

 $1/\Lambda^2$ [TeV⁻²]

0.2

dN_{exp} interpolation

Backgrounds

ll

- Z/γ*
- · QCD (ee only)
- ttbar
- WW, WZ, ZZ (diboson)
- W+jets (ee only)

ℓv

• W

- · Z ($\mu v \text{ only}$)
- ttbar
- diboson

Generators and PDF sets:

Z, W: Pythia with MRST2007 LO* WW, WZ, ZZ: Herwig with MRST2007 LO* ttbar: MC@NLO + Jimmy + Herwig with CTEQ6 W+jets: Alpgen + Jimmy + Herwig with CTEQ6

Cross sections and PDF sets:

Z, W: NNLO (PHOZPR, FEWZ, MCFMs+HORACE) with MSTW08 WW, WZ, ZZ: NLO

ttbar: approximate NNLO (HATHOR)

W+jets: NLO, rescaled to inclusive σ at NNLO

Discovery potential

