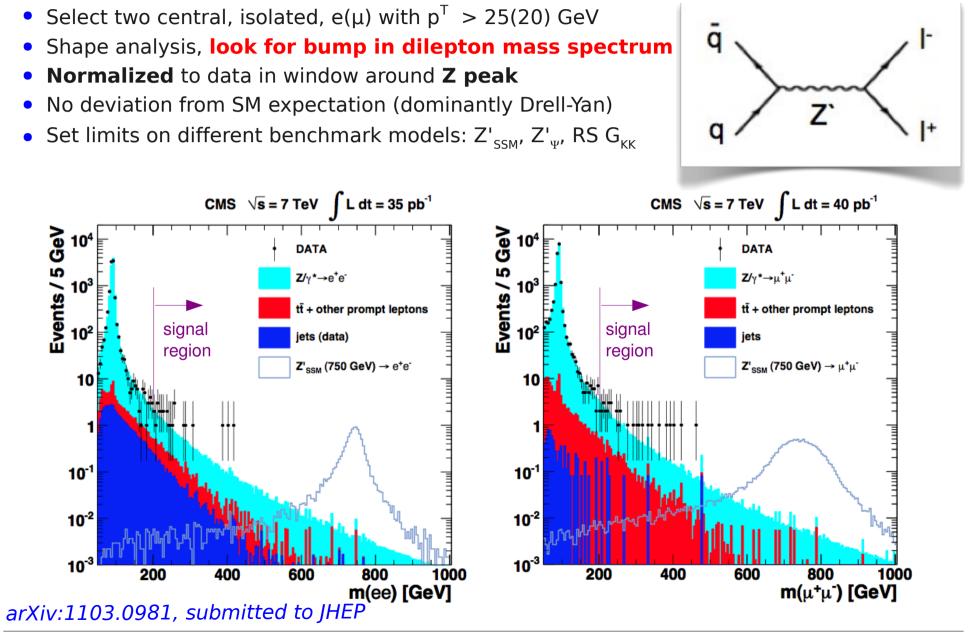
CMS Experiment at LHC, CERN Data recorded: Tue Oct 26 14:34:18 2010 CEST Run/Event: 149003 / 246002489

Resonances in leptonic channels and llqq contact interactions: CMS

M. Malberti (CERN) for the CMS Collaboration

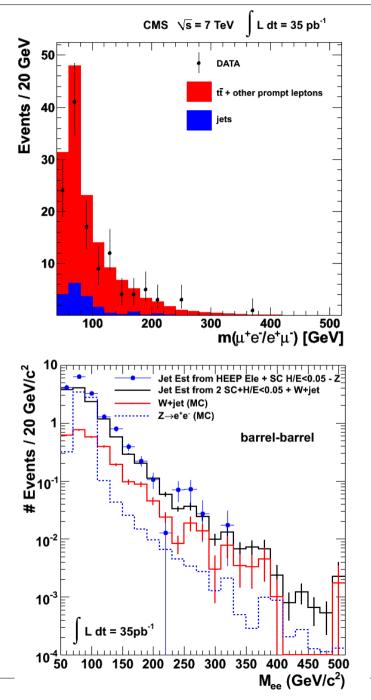
LPCC BSM Jamboree: Status of Higgs and BSM searches at the LHC 11-13 April 2011, CERN



April 12th, 2011

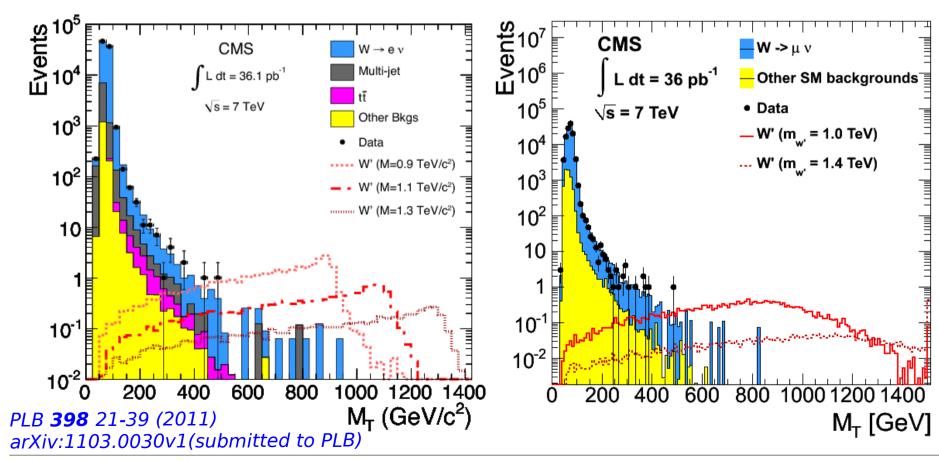
Introduction

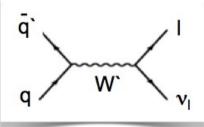
- New resonances foreseen in many SM extension
 - LR symmetric models, Extra Dimensions, GUT, compositeness models, etc...
- In this talk the following searches for exotic signatures in leptonic channels are discussed
 - Di-lepton resonances (Z'/RS \rightarrow ee/µµ)
 - New heavy charged bosons (W' \rightarrow ev/ μ v)
 - Excited leptons (e*, μ*)
 - Lepton jets
- All the analyses presented are based on the full 2010 dataset (~35 pb⁻¹)
- General strategy:
 - Look for excess in data in the high pT/mass region with respect to the SM expectations
 - no excess is observed \rightarrow set exclusion limit
- Good description of backgrounds is crucial
 - accurate shape model and normalization
 - use data-driven techniques when MC not fully reliable (e.g. jets misidentified as leptons) or to cross-check MC predictions


Search for Z'/RS graviton to di-leptons

Backgrounds estimation

- SM Drell-Yan (irreducible)
 - MC normalized to data at the Z peak
 - uncertainty from QCD h.o. corrections + PDF: 5.7% on the ratio N(high-mass)/N(Zpeak)
- Other backgrounds with prompt leptons (tt, WZ, WW, tW, Z→ττ)
 - cross-check of MC prediction with data-driven approach based on $e\mu$ mass spectrum
- Jets faking leptons (W+jet, di-jet)
 - e-channel: fake rate from jets-enriched data samples. Syst. unc. (25% EB, 40% EE) from comparisons between estimates obtained with different samples
 - μ-channel: from non-iso templates
- Cosmic muons
 - Select on impact parameter and opening angle between the two muons
 - Residual contamination from sidebands (0.1 evt)


Source	Number of events				
	Dimuon sample		Dielectron sample		
	(120 – 200) GeV	>200 GeV	(120 – 200) GeV	>200 GeV	
CMS data	227	35	109	26	
Z' _{SSM} (750 GeV)	—	15.0 ± 1.9	—	8.7 ± 1.1	
Total background	204 ± 23	36.3 ± 4.3	120 ± 14	24.4 ± 3.0	
Z/γ^*	187 ± 23	30.2 ± 3.6	104 ± 14	18.8 ± 2.3	
tī	12.3 ± 2.3	4.2 ± 0.8	7.6 ± 1.4	2.7 ± 0.5	
Other prompt leptons	4.4 ± 0.5	1.7 ± 0.2	2.1 ± 0.2	0.8 ± 0.1	
Multi-jet events	0.6 ± 0.2	0.2 ± 0.1	6.5 ± 2.6	2.1 ± 0.8	



April 12th, 2011

Search for W' \rightarrow ev and W' \rightarrow µv

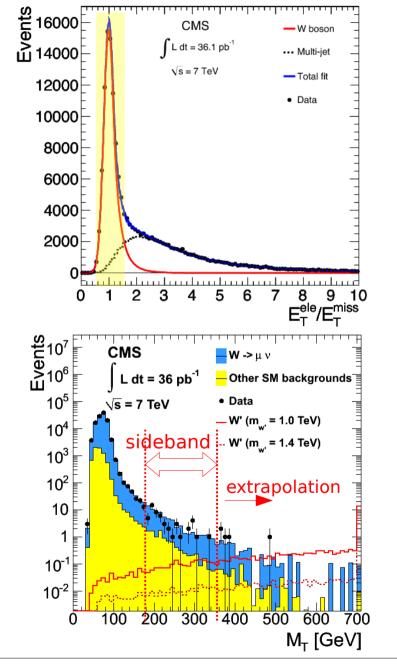
- Select a **central, isolated, e(μ)** with p^T > 30(25) GeV
 - **balanced by** \mathbf{E}^{T}_{miss} : 0.4 < p^{T}/E^{T}_{miss} < 1.5 and $\Delta \phi$ (lept- E^{T}_{miss}) < 2.5
- Look for Jacobian peak in transverse mass (M^T) distribution
- Counting experiment in bins of M^T corresponding to M(W') > 600,700,...
- 1-0 evts observed in μ-channel, 2-0 evts in e-channel, consistent with exp bkg
- Reference Model by Altarelli et al. as benchmark model

Backgrounds estimation

- Main background: irreducible SM W \rightarrow lv
- Bkg estimate in the high-MT region: two different approaches for electron and muon channels

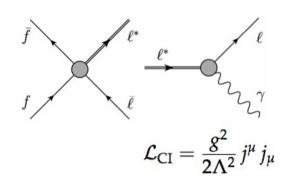
Electron channel

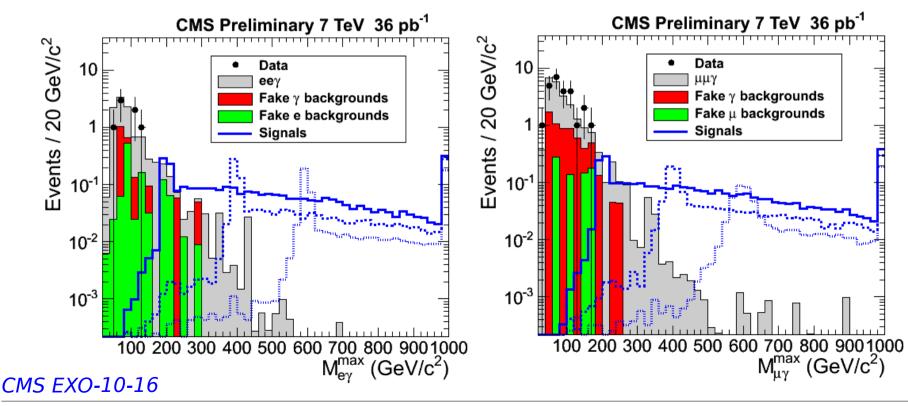
• Minor contributions from tt and others from MC


• $W \rightarrow ev$ and multi-jet from templates

- Fit data E^T/E^T_{miss} distribution with QCD template (from non-iso.) + W template (from MC), leaving the two normalizations as free parameters
- M^T spectra are normalized to the template area in the region $0.4 < E^T/E^T_{miss} < 1.5$

Muon channel:


- Sideband fit with Breit-Wigner function in the range 180 GeV $< M^T < 350$ GeV
- Extrapolation in the high M^T region
- Cross check with MC


PLB **398** 21-39 (2011) arXiv:1103.0030v1(submitted to PLB)

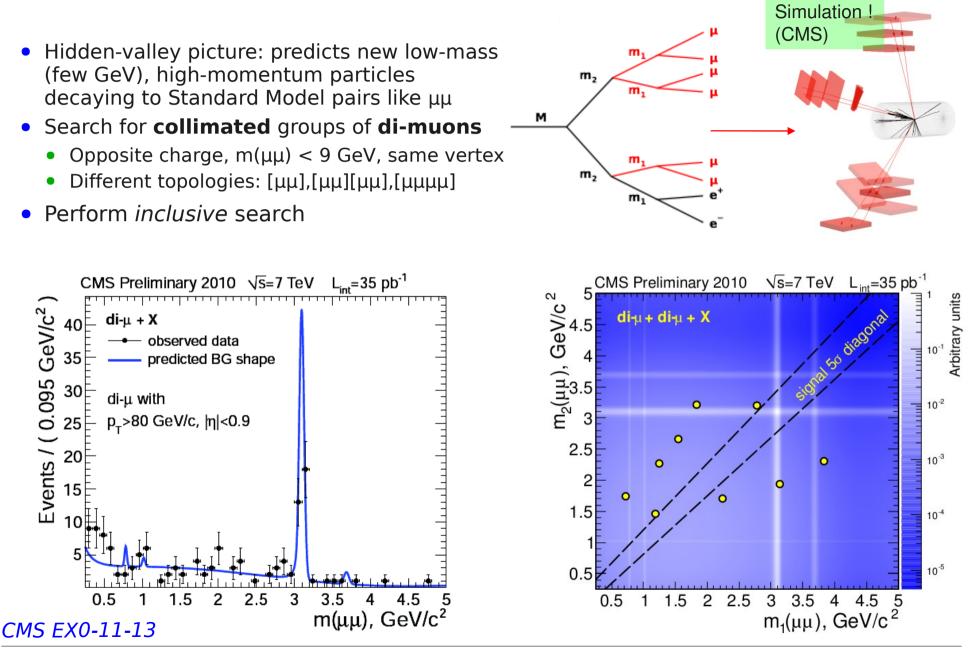
Excited leptons

- Search for the production of an excited lepton (e/μ) in association with a SM lepton via novel contact interactions (scale determined by parameter Λ)
 - qq→μμ*→μμγ , qq→ee*→eeγ
- Two isolated $e(\mu)$ with $p^T > 20(25)$ GeV
- isolated photon with $E^T > 20$ GeV and $\Delta R(\gamma, \ell) > 0.5$
- Look for an excess in $M(\ell \gamma)$ distribution
- 0 events observed at high M(μγ), M(eγ)

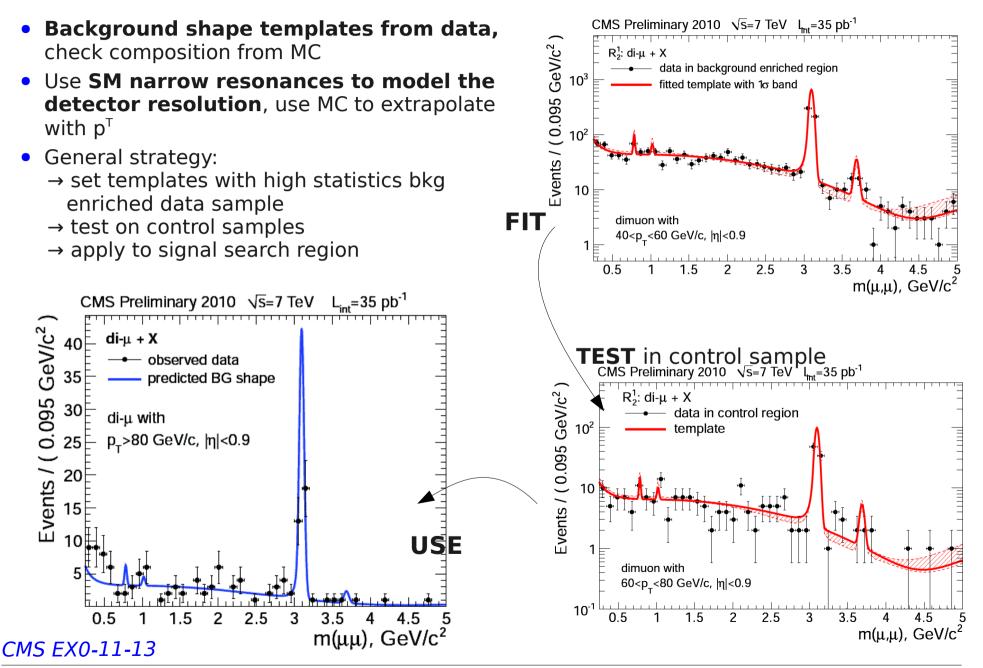
April 12th, 2011

Backgrounds estimation

- Contamination from SM processes (mainly $Z/\gamma^* \rightarrow \ell \ell$) with real lepton and photons from MC
- Backgrounds with jets misidentified as leptons (mainly W→ℓv+γ) or photons (mainly Z/γ*(ℓℓ)+jets) from data samples containing jets
 - Photon fake rate from sample failing isolation or shower shape requirements
 - Electron fake rate from e.m. clusters
 - Muon fake rate = number of identified muons / number of tracker muons
- Modeling tested in several control regions, with looser selections and after final event selection


	E						E
\geq	Ē	· ·	. [• [Data	 	
(D)	40	-		e	σεγ		-
0	10	•			ake γ backgr	ounds	
¥	Ē	:' [ake e backgr		
°.	1				Signal M = 20	-	_
Ľ,					e*		Ē
Events / 10 GeV/c	10-1						-
ш	10 ⁻¹						
							-
	10 ⁻²	-					
	1 - 3	-					-
	10 ⁻³						
							_=
	20	0 40	60 8	0 100) 120 140	160 180 2 ρ ^γ (GeV/α	200
						p ₁ (GeV/d	C)
			CMS	6 Prelir	ninary 7 Te	eV 36 pb ⁻¹	
2							
>		E''''				· · · · · · · · · · · · · · · · · · ·	
(m)				•	Data	<u>, , , , , , , , , , , , , , , , , , , </u>	
Ge)	10			•	Data μμγ	· · · · · · · · · · · · · · · · · · ·	
10 Ge/	10				Data μμγ Fake γ backg	rounds	
/ 10 Ge [\]	10		······		Data μμγ Fake γ backg Fake μ backg	rounds	
ts / 10 Ge [\]	10 1		·····		Data μμγ Fake γ backg	rounds	
ents / 10 Ge/	10 1		······		Data μμγ Fake γ backg Fake μ backg	rounds	
Events / 10 Ge/	10 1 10 ⁻¹				Data μμγ Fake γ backg Fake μ backg	rounds	
Events / 10 GeV/c	10 1 10 ⁻¹				Data μμγ Fake γ backg Fake μ backg	rounds	
Events / 10 Ge/					Data μμγ Fake γ backg Fake μ backg	rounds	
Events / 10 Ge/	10 1 10 ⁻¹ 10 ⁻²				Data μμγ Fake γ backg Fake μ backg	rounds	
Events / 10 Ge/					Data μμγ Fake γ backg Fake μ backg	rounds	
Events / 10 Ge/	10 ⁻²				Data μμγ Fake γ backg Fake μ backg	rounds	
Events / 10 Gev					Data μμγ Fake γ backg Fake μ backg	rounds	
Events / 10 Ge/	10 ⁻² 10 ⁻³				Data $\mu\mu\gamma$ Fake γ backg Signal $M_{\mu^*} = 2$	rounds rounds 200 GeV/c ²	
Events / 10 Gev	10 ⁻² 10 ⁻³	2 40			Data μμγ Fake γ backg Fake μ backg	rounds rounds 200 GeV/c ²	2000 CC

CMS Preliminary 7 TeV 36 pb⁻¹


Final State	$\ell^+\ell^-\gamma$	$\ell^+\ell^- + jet(s)$	$\ell \gamma + jet(s)$	Total	Observed
$\mu^+\mu^-\gamma$	16.3 ± 1.3	5.5 ± 2.1	0.7 ± 0.9	22.6 ± 2.6	25
$e^+e^-\gamma$	8.3 ± 0.9	1.4 ± 0.8	1.0 ± 0.4	10.7 ± 1.3	7

CMS EXO-10-16

Lepton jets

Background estimation

April 12th, 2011

Overview of main systematics (I)

Systematic uncertainties arise from detector performance and theoretical uncertainties on background and signal modeling

Luminosity:

• 11% uncertainty (recently improved to 4%)

Trigger and lepton reconstruction/identification efficiency

- use Z Tag&Probe method
- measured within few % uncertainty
- extrapolation with MC for very high p^T range
 - main contribution (8%) to systematic uncertainty on Z' to Z efficiency ratio in the e-channel

Energy scale/resolution

- Electrons/photons
 - ECAL scale from Z→ee and low mass $\gamma\gamma$ resonances (1%-3% accuracy)
 - extrapolation to high pT exploiting ECAL linearity, MC, cross-check in data exploiting electron shower shape
- Muons
 - from Z→μμ
 - cosmics provide validation at high pT

Overview of main systematics (II)

Missing transverse energy

- model hadronic recoil from $Z \rightarrow ee/Z \rightarrow \mu\mu$ events
 - along with energy scale and eff. uncertainty affects the bkg estimation in W' → ev searches (total ~28% uncertainty for MT > 500 GeV)

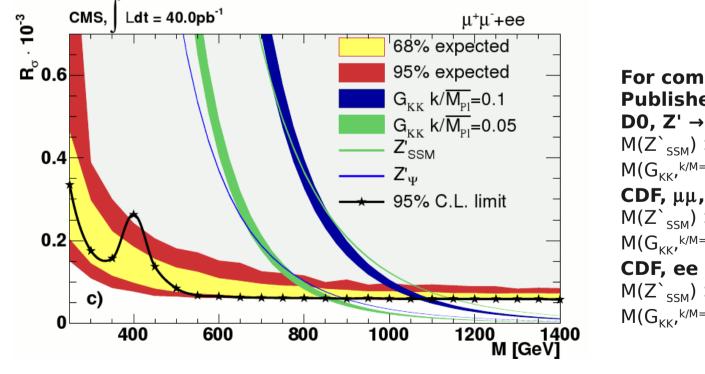
Electron/muons/photon fake rates

 Uncertainty estimated comparing results with different datasets/selections, and applying to control samples. Large uncertainties (25%-50%) but marginal impact in the high mass/pt region

Theoretical uncertainties

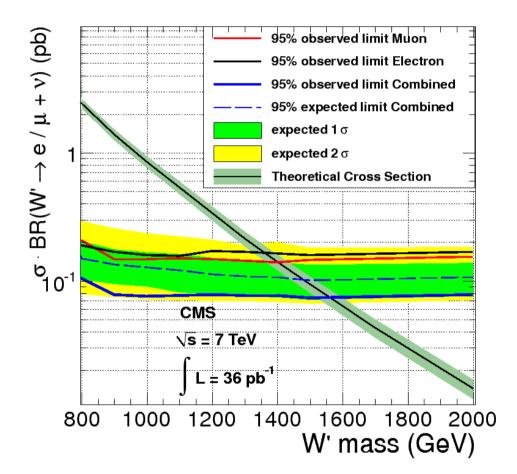
- PDF uncertainties reweighting PDF sets
- QCD higher order corrections estimated varying factorization and renormalization scales

SETTING UPPER LIMITS:

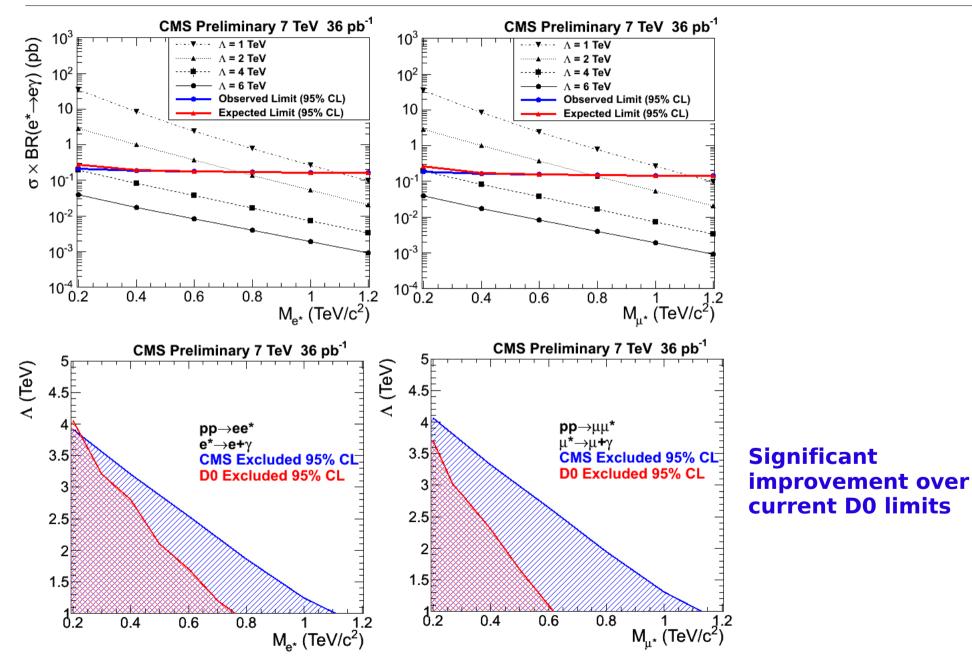

- Simple **Bayesan approach** to set 95% C.L. Exclusion limit
- Flat prior for signal cross section
- Systematic uncertainties treated as nuisance parameters with log-normal prior distribution

Results - Dileptons

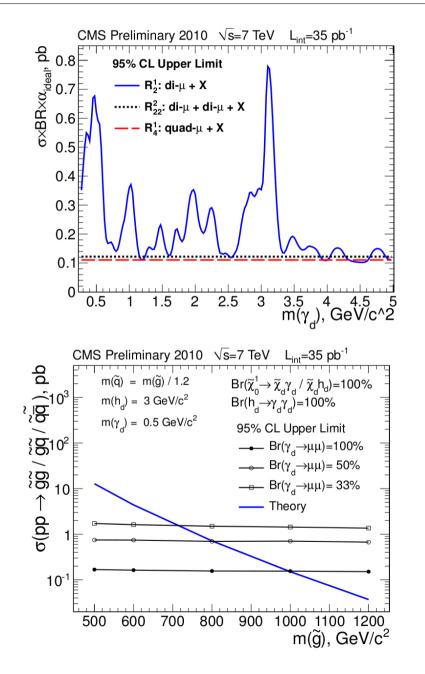
 Set limits on ratio of production cross sections (uncertainty form luminosity canceled)


$$\frac{\sigma \times BR(Z')}{\sigma \times BR(Z^0)} = \frac{N(Z')}{N(Z^0)} \times \frac{A(Z^0)}{A(Z')} \times \frac{\epsilon(Z^0)}{\epsilon(Z')}$$

Channel	μμ	ee	Combined
Z _{SSM}	1027 GeV	958 GeV	1140 GeV
Ζ _ψ	792 GeV	731 GeV	887 GeV
G _{KK} , k/M _{Pl} = 0.05	778 GeV	729 GeV	855 GeV
G _{KK} , k/M _{Pl} = 0.10	987 GeV	931 GeV	1079 GeV


For comparison: Published CDF/D0 limits D0, Z' \rightarrow ee, G \rightarrow 5.4 fb⁻¹: $M(Z_{SSM}) > 1023 \text{ GeV}$ $M(G_{KK},^{k/M=0.1}) > 1050 \text{ GeV}$ CDF, $\mu\mu$, 2.3 fb⁻¹: $M(Z_{SSM}) > 1030 \text{ GeV}$ $M(G_{KK},^{k/M=0.1}) > 921 \text{ GeV}$ CDF, ee , 2.5 fb⁻¹: $M(Z_{SSM}) > 963 \text{ GeV}$ $M(G_{KK},^{k/M=0.1}) > 848 \text{ GeV}$

Results - W'

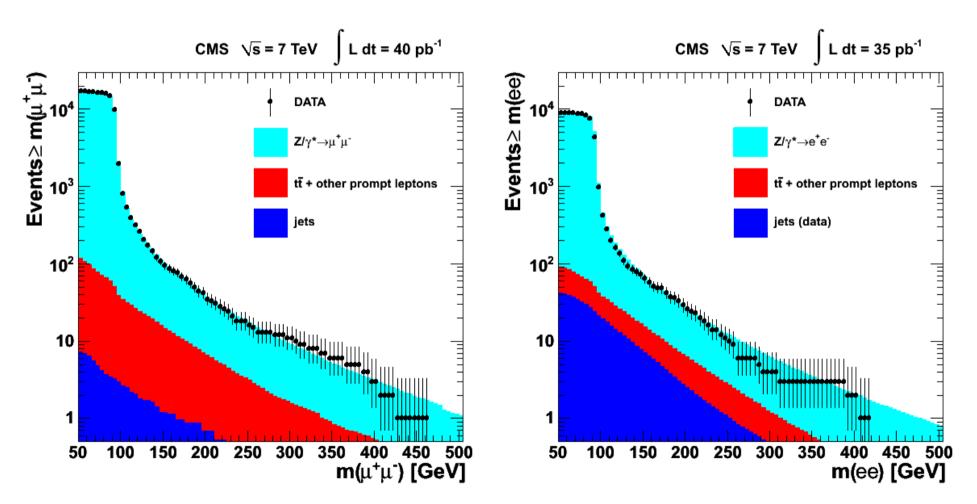


- Reference Model as benchmark
- Exclusion limits
 - e-channel M(W') > 1.36 TeV
 - μ -channel M(W') > 1.4 TeV
 - combined M(W') > 1.58 TeV
- Superseded TeVatron limits (CDF, 1.1 TeV)

Results - excited leptons

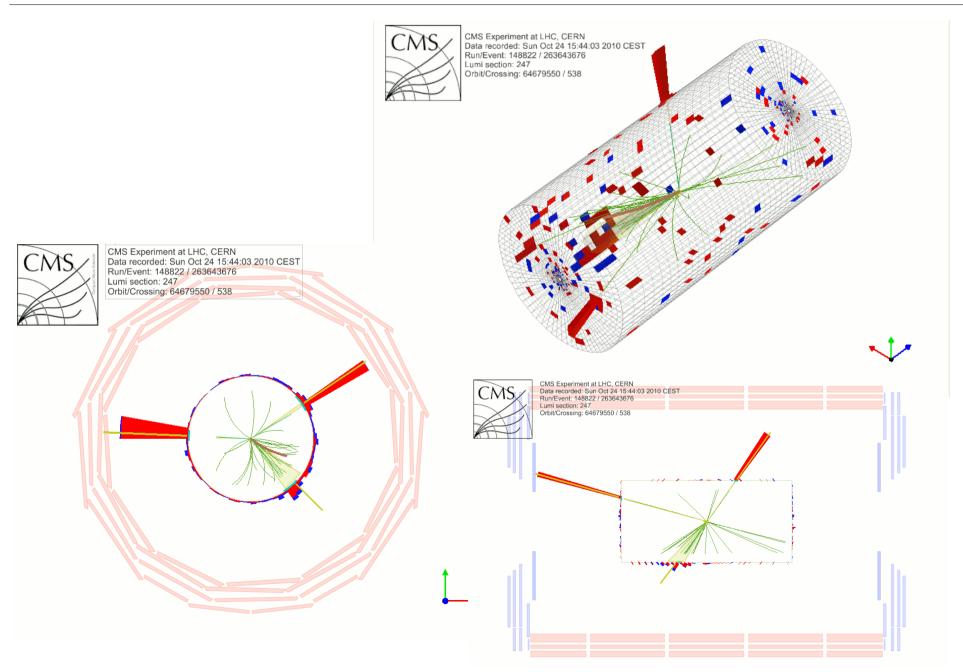
Results – lepton jets

 Upper limit on cross-section x branching fraction x acceptance, where acceptance must be supplied by the model in question

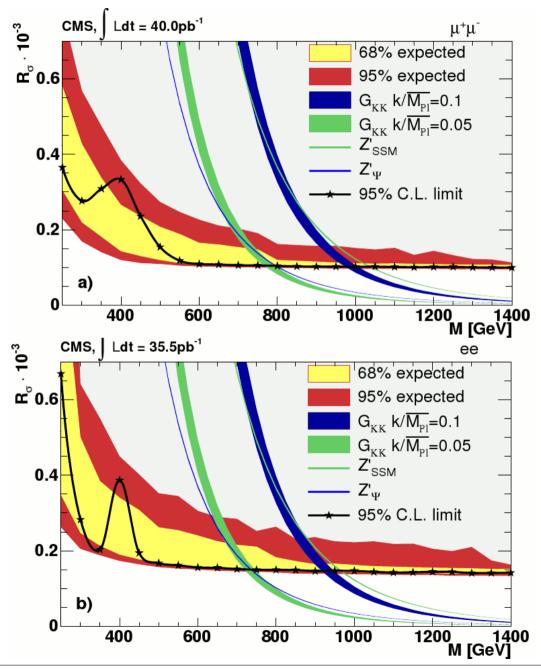

 Example of application to model of SUSY dark matter with a ~1 GeV/c² dark photon, inspired by the PAMELA interstellar positron excess (PRL 103 (2009) 051801)

Summary

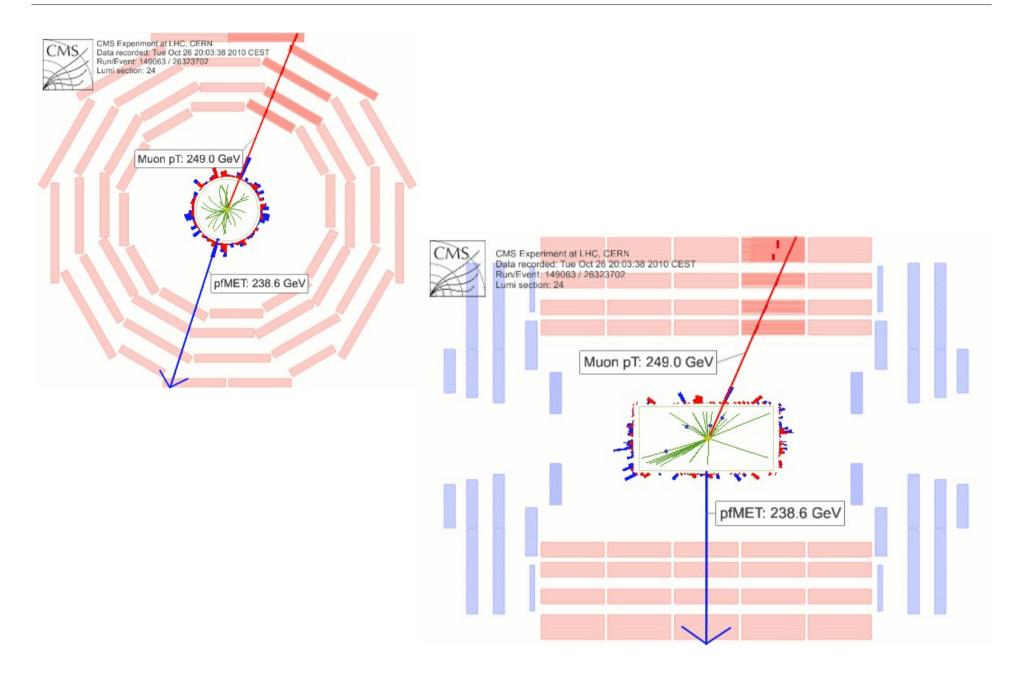
- Searches for leptonic resonances with 2010 pp collision data shown
- No significant excess found in data
- Good understanding of detector and backgrounds
 - Data-driven background estimation in most cases
- We exceed the exclusion limits previously set by Tevatron experiments
- These results are the basis for searches with much larger datasets expected in 2011

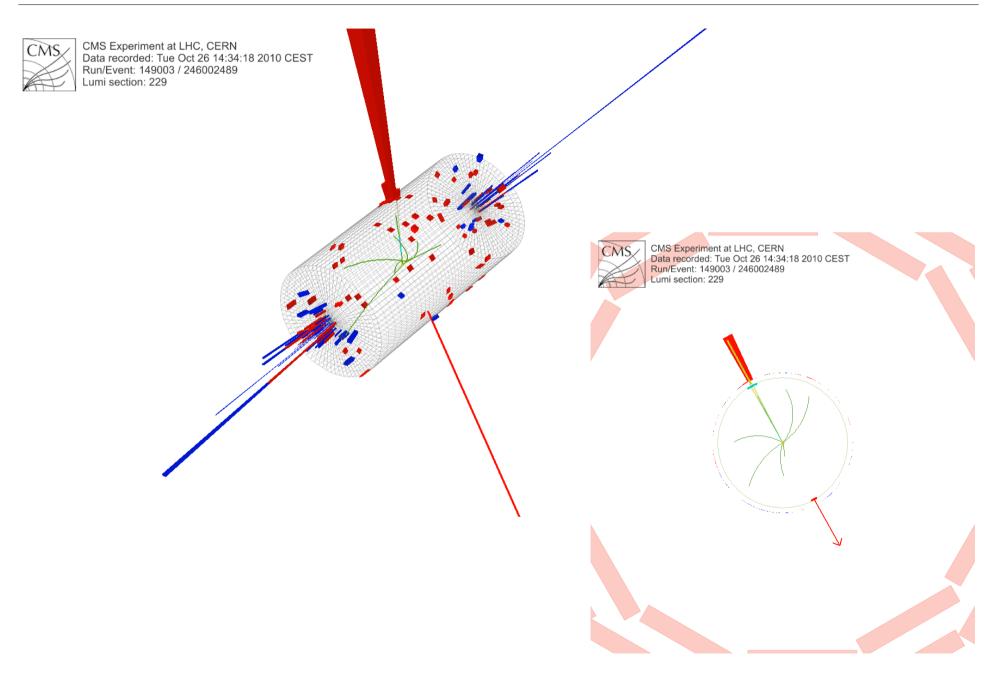

BACKUP SLIDES

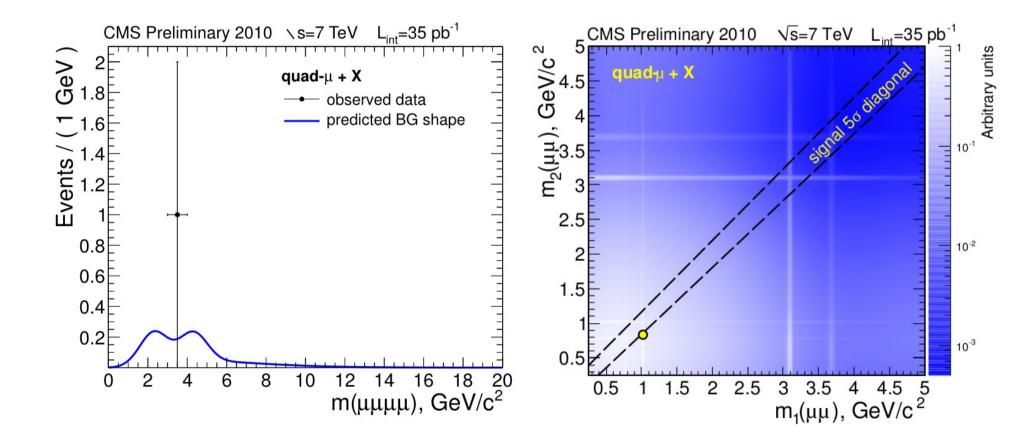
• Cumulative distributions



Ζ'


Highest mass event display


Z' results


W' $\rightarrow \mu \nu$ highest MT event

W' \rightarrow ev highest MT event

Lepton jets - 4 muons event

Bayesian upper limit

• Bayesian approach to set 95% C.L. upper limits

$$\int_{-\infty}^{\sigma_{\rm up}(n)} p(\sigma|n, A, \mathcal{L}, b) d\sigma = \frac{\int_{-\infty}^{\sigma_{\rm up}(n)} L'(n|\sigma, A, \mathcal{L}, b)\pi(\sigma) d\sigma}{\int_{-\infty}^{+\infty} L'(n|\sigma, A, \mathcal{L}, b)\pi(\sigma) d\sigma} = 0.95$$

$$L'(n|\sigma, A, \mathcal{L}, b) = \int_{0}^{+\infty} \int_{0}^{+\infty} \int_{0}^{+\infty} L(n|\sigma, A', \mathcal{L}', b') \underbrace{g(A')h(\mathcal{L}')f(b')}_{q(A')h(\mathcal{L}')f(b')} dA' d\mathcal{L}' db'$$

$$\pi(\sigma) = \begin{cases} 0 & \sigma < 0 \\ 1 & \sigma \ge 0 \end{cases}$$
Flat prior
$$\pi(\sigma) = \begin{cases} 0 & \sigma < 0 \\ 1 & \sigma \ge 0 \end{cases}$$
Poisson distribution
$$L(n|\sigma, A', \mathcal{L}', b') = \frac{(\sigma A'\mathcal{L}' + b')^n}{n!} e^{-(\sigma A'\mathcal{L}' + b')}$$
Expected upper limit
$$<\sigma_{\rm up} > = \sum_{n=0}^{+\infty} \sigma_{\rm up}(n)L(n|\sigma = 0, A, \mathcal{L}, b)$$

$$n = number of observed events$$

$$A = acceptance \times efficiency$$

$$\mathcal{L} = integrated luminosity$$

$$b = expected number of background events$$