

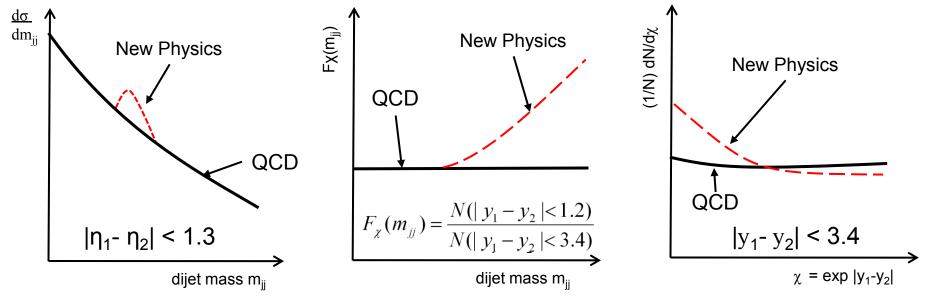
Resonances in Hadronic Channels and Quark Substructure

Frederik Rühr on behalf of the

ATLAS Collaboration

LPCC Workshop on Higgs and BSM, April 2011, CERN

Introduction


Introduction

Search for new physics in inclusive dijet final statesBenchmark hypothesesplus

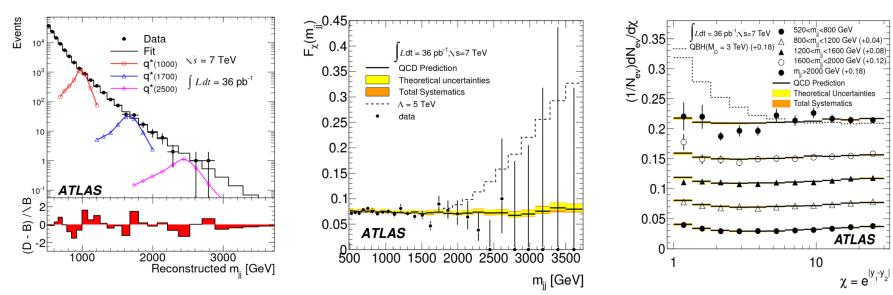
- Quark contact interactions (CI)
- Excited quarks (q*)

- Axigluons
- Quantum Black Holes (QBH)*
- Generic Gaussian Model

Three related observables:

Two-dimensional dijet mass/angular distribution space

• Different "slices" specialized for signal types


Introduction

Search for new physics in inclusive dijet final statesBenchmark hypothesesplus

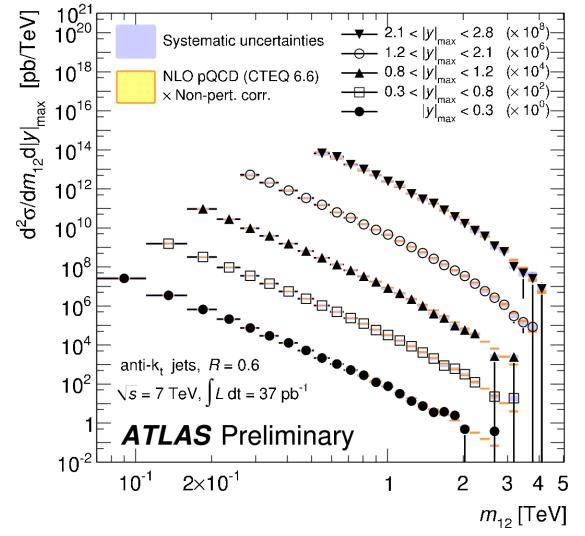
- Quark contact interactions (CI)
- Excited quarks (q*)

Three related observables:

- Axigluons
- Quantum Black Holes (QBH)*
- Generic Gaussian Model

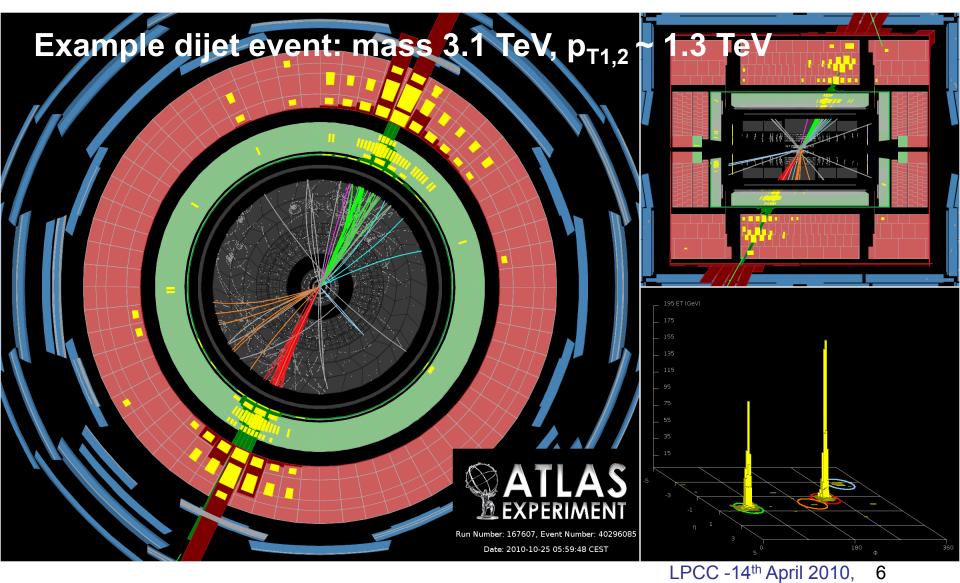
Two-dimensional dijet mass/angular distribution space

• Different "slices" specialized for signal types


Reach of analyses

2010 data:

- High reach in m_{jj}
- Highest dijet mass event passing event selection for searches
 - 3.5 TeV


There could have been surprises

- Dijet cross-section in agreement with QCD prediction over many orders of magnitude
- All searches (more sensitive)
 - negative result
 - Limit setting

Dijet Event Display

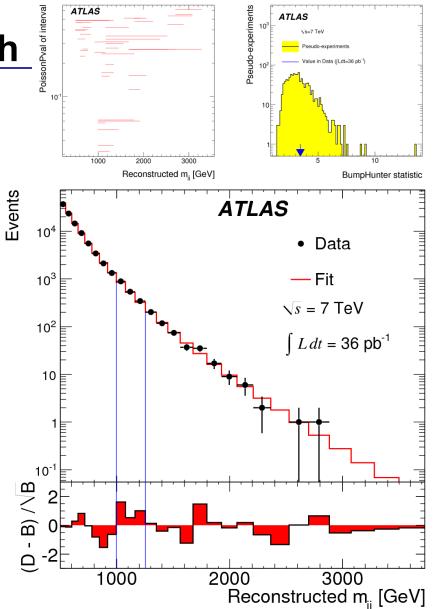
Dijet Resonance Search

' arXiv:1103.3864v1 [hep-ex] ,

Dijet Resonance Search

- Is there a bump in m_{jj} ?
- Potential signal enhanced by event selection on
 - |η₁-η₂|<1.3
- Background estimated by fitting uncorrected data with

$$f(x) = p_0 \frac{(1-x)^{p_1}}{x^{p_2+p_3 \ln x}}, \ x \equiv \frac{m^{jj}}{\sqrt{s}}.$$


• Fully data driven

Model independent search phase

- p-value based on BUMPHUNTER statistic
- How significant is the statistically most significant feature?
 - Bump at 995-1253 GeV
 - p-value = 39%

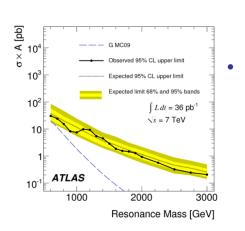
No new physics

Dijet Resonance Limits

Benchmark hypothesis: excited quarks

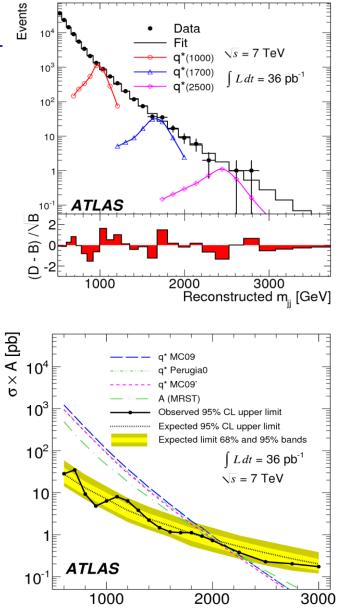
- Spin ¹/₂, quark like couplings
- Compositeness scale set to mass of q*

Observed Bayesian* limit at 95% C.L. (expected)


• 0.60 TeV < m_{q*} < 2.15 TeV (2.07 TeV)

Additional new physics hypotheses

- Axigluons
- 0.60 < m < 2.10 TeV (2.01 TeV)
- QBH


0.75 < M_D < 3.67 TeV (3.64 TeV)

(e.g. n = 6)**

RS Graviton:

- $\sigma x A$ limits
- No exclusion

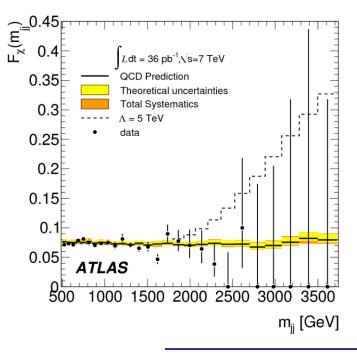
Resonance Mass [GeV]

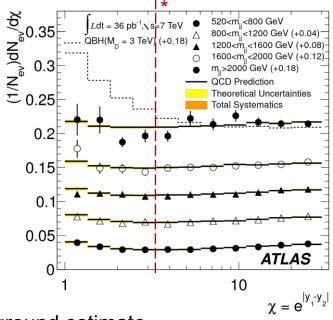
*Prior constant in signal strength ** n = number of spatial extra dimensions in the ADD scenario

Simplified Gaussian Model

Goal: Mean m (GeV) • More model independent results 600 • Allow setting of limits on additional models not explicitly considered 700 Simplified Gaussian Model 1000 • Resonance signal shape approximated by Gaussian 1200 • Within a 20% mass window around the peak 1800 • Limits on event yield in 36pb ⁻¹ , at 95% C.L. 1900 • Include all experimental uncertainties 2000 $Model = Minippi = Minippi$		
 More model independent results Allow setting of limits on additional models not explicitly considered Simplified Gaussian Model Resonance signal shape approximated by Gaussian Within a 20% mass window around the peak Limits on event yield in 36pb⁻¹, at 95% C.L. Include all experimental uncertainties 	Goal:	S 7
• Allow setting of limits on additional models not explicitly considered 800 900 900• Simplified Gaussian Model100 100• Resonance signal shape approximated by Gaussian1400 1500• Within a 20% mass window around the peak1700 1800• Limits on event yield in 36pb-1, at 95% C.L.1900 2000• Include all experimental uncertainties2100 2000 M_{00}^{0} M_{00}^{0} M_{00}^{0} M_{00}^{0} $M_$	More model independent regulte	
 Allow setting of limits on additional models not explicitly considered Simplified Gaussian Model Resonance signal shape approximated by Gaussian Within a 20% mass window around the peak Limits on event yield in 36pb⁻¹, at 95% C.L. Include all experimental uncertainties Include all experimental uncertainties $\frac{1000}{2500}$ 100		
explicitly considered 1000 Simplified Gaussian Model 100 9. Resonance signal shape approximated by 1400 1300 9. Within a 20% mass window around the peak 100 1400 1500 1600 1600 1600 1600 1600 1700 1600 1000	 Allow setting of limits on additional models not 	
Simplified Gaussian Model • Resonance signal shape approximated by Gaussian • Within a 20% mass window around the peak • Limits on event yield in $36pb^{-1}$, at 95% C.L. • Include all experimental uncertainties 2000 3000 30		
Simplified Gaussian Model1200• Resonance signal shape approximated by Gaussian1400• Within a 20% mass window around the peak1700• Within a 20% mass window around the peak1700• Limits on event yield in 36pb ⁻¹ , at 95% C.L.1900• Include all experimental uncertainties2100 2200 2300 2300 2400 2300 2400 2300 2500 2300 2500 2300 2500 2300 2500 2300 2500 2300 2500 2300 2500 2300 2500 2300 2500 3000 3	explicitly considered	
 Resonance signal shape approximated by Gaussian Within a 20% mass window around the peak Limits on event yield in 36pb⁻¹, at 95% C.L. Include all experimental uncertainties Include all experimental uncertainties $\frac{100}{100}$ $\frac{100}{200}$ <l< td=""><td>Simplified Gaussian Model</td><td></td></l<>	Simplified Gaussian Model	
 Resonance signal shape approximated by Gaussian Within a 20% mass window around the peak Limits on event yield in 36pb⁻¹, at 95% C.L. Include all experimental uncertainties Include all experimental uncertainties $\frac{100}{200}$ <l< td=""><td>Simplined Gaussian woder</td><td></td></l<>	Simplined Gaussian woder	
Gaussian1500• Within a 20% mass window around the peak1700• Limits on event yield in 36pb-1, at 95% C.L.1900• Include all experimental uncertainties2000 2000<	 Resonance signal shape approximated by 	
Gaussian 1600 • Within a 20% mass window around the peak 1700 100 • Limits on event yield in 36pb ⁻¹ , at 95% C.L. 1900 2000 • Include all experimental uncertainties 2100 20		
• Writing a 20% mass window around the peak • Limits on event yield in 36pb ⁻¹ , at 95% C.L. • Include all experimental uncertainties	Gaussian	
• Limits on event yield in 36pb ⁻¹ , at 95% C.L. • Include all experimental uncertainties $\int_{0}^{1000} \int_{0}^{1000} \int_$	• Within a 20% mass window around the neak	1700
• Include all experimental uncertainties 2100 2200 2300 2300 2400 2400 2500 2600 2700 2800 2900 3000 3000 3000 3200 3000 3200 3000 3200 3000 3200 3000 3200 3000 3200 3000 3200 3000 3200 3000 3200 3000 3200 3000 3200 3000 3200 3000 3200 3000 3200 3000 3200 3000 3200 3000 3200 3000 3200 3000 3200 3000 3000 3200 3000 3200 300	villin a 2070 mass window around the peak	1800
• Include all experimental uncertainties 2100 2200 2300 2300 2400 2400 2500 2600 2700 2800 2900 3000 3000 3000 3200 3000 3200 3000 3200 3000 3200 3000 3200 3000 3200 3000 3200 3000 3200 3000 3200 3000 3200 3000 3200 3000 3200 3000 3200 3000 3200 3000 3200 3000 3200 3000 3200 3000 3200 3000 3200 3000 3000 3200 3000 3200 300	 Limits on event yield in 36pb⁻¹ at 95% C L 	1900
$\begin{array}{c} 1 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\$		2000
$\begin{array}{c} 1 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\$	 Include all experimental uncertainties 	2100
	·	2200
$10^{4} = \frac{10^{4}}{2000} + \frac{10^{4}}{4000} + \frac{10^{4}}{6000} + \frac{10^{4}}{2000} + \frac{10^{4}}{200} + \frac{10^{4}}{200} + \frac{10^{4}}{200} + 10$		2300
$10^{4} = \frac{10^{4}}{2000} + \frac{10^{4}}{4000} + \frac{10^{4}}{6000} + \frac{10^{4}}{2000} + \frac{10^{4}}{200} + \frac{10^{4}}{200} + \frac{10^{4}}{200} + 10$		
$10^{4} = \frac{10^{4}}{2000} + \frac{10^{4}}{4000} + \frac{10^{4}}{6000} + \frac{10^{4}}{2000} + \frac{10^{4}}{200} + \frac{10^{4}}{200} + \frac{10^{4}}{200} + 10$		
$10^{2} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$		
$10^{2} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$		
$10^{2} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 10^{3} \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$		
$10^{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 \\ 10^{4} & 2000 & 4000 & 6000 \end{bmatrix} = \begin{bmatrix} 3200 \\ 3400 \\ 3800 \\ 4000 \\ \hline \end{bmatrix}$	10 ² = المراجع =	
$10^{-3} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ $\frac{3400}{3600}$ $\frac{3800}{4000}$		
$ \begin{array}{c} 10^{3} \\ 10^{4} \\ 2000 \\ 4000 \\ 6000 \\ \hline 10^{4} \\ 2000 \\ 4000 \\ 6000 \\ \hline 3600 \\ 3800 \\ 4000 \\ 4000 \\ \hline 10^{4} \\ 10^{4} \\ $		
10 ⁻⁴ 2000 4000 6000 4000		
2000 4000 6000		
Beconstructed m ^{ij} [GeV]	10 ⁻⁴ 2000 4000 6000	
	Reconstructed m ^{ij} [GeV]	

	σ/m				
an m (GeV)	0.03	0.05	0.07	0.10	0.15
600	434	638	849	1300	1990
700	409	530	789	1092	945
800	173	194	198	218	231
900	88	103	123	162	311
1000	147	179	210	278	391
1100	143	169	204	263	342
1200	91	120	168	223	262
1300	65	80	101	120	122
1400	35	42	50	57	66
1500	24	27	32	40	60
1600	21	25	29	36	49
1700	26	27	28	38	43
1800	25	26	30	32	34
1900	22	22	25	25	26
2000	13	16	19	19	17
2100	10	12	14	16	17
2200	8.4	9.4	11	10	11
2300	6.8	7.3	7.4	8.3	9.0
2400	4.9	5.2	6.1	6.6	8.0
2500	4.6	4.9	5.4	6.4	6.9
2600	4.9	5.0	5.3	6.0	6.6
2700	5.1	5.0	5.0	5.2	5.7
2800	5.0	5.0	4.9	5.0	5.2
2900	4.6	4.5	4.7	4.6	4.8
3000	4.1	4.2	4.3	4.5	4.7
3200	3.2	3.5	3.6	3.8	4.1
3400	3.1	3.1	3.2	3.5	3.7
3600	3.1	3.1	3.1	3.3	3.6
3800	3.1	3.1	3.1	3.2	3.3
4000	3.1	3.1	3.1	3.1	3.3


Angular Distributions



Dijet Angular Distributions

Two observables

- χ-spectra 💻
 - finely grained in angular space
 - Single mass bin m_{jj} > 2 TeV
- F _χ(m_{jj})
 - finely grained in dijet mass
 - Simple ratio (left of line* to total) in angular variable χ

Background estimate

 QCD Monte Carlo prediction including detector simulation and NLO k-factors

Search phase:

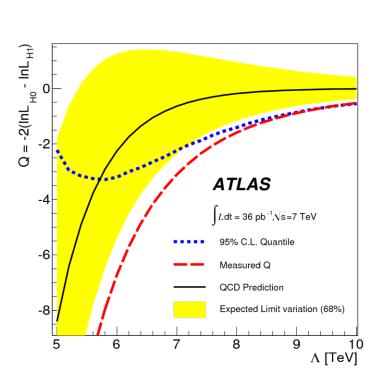
p-values with Likelihoods as statistic

- χ-spectra (low to high mass):
 - 0.44, 0.33, 0.64, 0.89 and 0.44
- $F_{\chi}(m_{jj})$ (bins with m_{jj} >1.3 TeV): 0.28

No new physics

Angular Distributions - Limits

Observable: F_{χ}

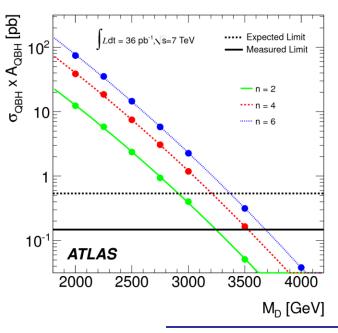

• Match approach to signal hypothesis

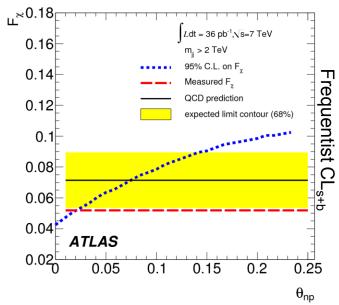
Benchmark hypothesis: quark contact interactions

• Effective Lagrangian

$$\mathcal{L}_{qqqq}(\Lambda) = \frac{\eta g^2}{2(\Lambda_{LL}^+)_q^2} \bar{\Psi_q^L} \gamma^\mu \Psi_q^L \bar{\Psi_q^L} \gamma^\mu \Psi_q^L$$

- m_{jj} dependency of F_{χ} well described
- Signal extends to low masses
 - Finely binned F_χ(m_{jj})


Limit setting approach


- Frequentist CL_{s+b} , using "LEP" Likelihood ratio Q= -2 (InL(H0) InL(H1))
- Lowest value of Λ compatible with data (expected):
 - 9.5 TeV (5.7 TeV) power of the test at observed limit = 8%
 - Comparison of observed CL_{s+b} to e.g. CL_s not straightforward
 - Bayesian result: 6.7 TeV (5.7 TeV)

Angular Distributions - Limits

- Quantum Black Holes decaying to two-particle final states
- Simple phenomenological signature using BlackMax generator
 - m_{jj} dependency above production threshold potentially not reliable
 - No signal below threshold
 - \mathbf{F}_{χ} with single mass bin of m_{jj} > 2 TeV
 - Less model dependent

Lower limits on production threshold (expected)

- N = x spatial extra dimensions
 - 2: 3.26 TeV (2.91 TeV)
 - **4: 3.53 TeV** (3.20 TeV)
 - 6: **3.69 TeV** (3.37 TeV)
- Production cross-section depends on model assumptions
 - Results also include generic limits on $\sigma_{\text{QBH}}\,x\,A_{\text{QBH}}\,\text{and predicted F}_{\chi}$

Summary and Conclusions

Bayesian B Frequentist CL_{s+b} F

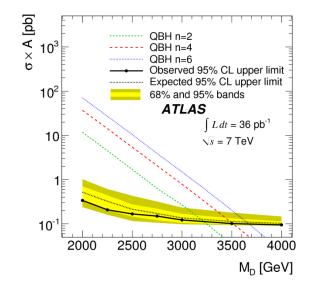
• The LHC has performed amazingly well in 2010

- many Tevatron results superseded
- We are well into uncharted territory
- Several ATLAS analyses have been performed to search for new physics in dijet final states
 - No evidence for new physics yet

	•	5.1	,	
Model and Analysis Strategy	95% C.L. I	95% C.L. Limits (TeV)		
	Expected	Observed		
Excited Quark q	! [*]		-	
Resonance in m_{ij}	2.07	2.15	В	
$F_{\chi}(m_{jj})$	2.12	2.64	F	
Randall-Meade Quantum Blac	k Hole for n	= 6	-	
Resonance in m_{jj}	3.64	3.67	В	
$F_{\chi}(m_{jj})$	3.49	3.78	F	
θ_{np} Parameter for $m_{jj} > 2$ TeV	3.37	3.69	F	
11-bin χ Distribution for $m_{jj} > 2$ TeV	3.36	3.49	F	
Axigluon			-	
Resonance in m_{jj}	2.01	2.10	В	
Contact Interaction Λ				
$F_{\chi}(m_{jj})$	5.7	9.5	F	
F_{χ} for $m_{jj} > 2$ TeV	5.2	6.8	F	
11-bin χ Distribution for $m_{jj} > 2$ TeV	5.4	6.6	F	
$F_{\chi}(m_{ij})$ Bayesian	5.7	6.7	В	

- Most stringent limits to date were set on a number of models
- Benchmarks, at 95% C.L. (expected:
 - m(q*) > 2.64 TeV (2.12 TeV) Λ > 9.5 TeV (5.7 TeV) (CL_{s+b})
- Generic Gaussian Model: Limits on signal yield in 36pb⁻¹ of down to 3.1 events (depending on resonance mass and width)
- 2011 data expected to quickly supersede 2010 results, leaving ample space for discoveries

Thanks for your attention!

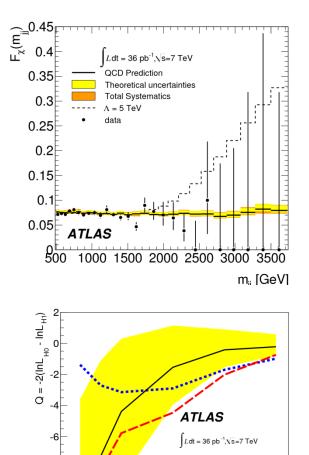

Backup

QBH in the resonance search

Limits on MD

- Signal: Threshold effect
 - Sharp enough rise in MC prediction for resonance analysis to be viable
- Bayesian
- Slightly more sensitive than slide 14, but depends on exact modelling of d_σ/dm_{jj} by MC generator

Number of	Observed M_D	Limit [TeV]	Expected M_D	Limit [TeV]
Extra Dimensions	Stat. \oplus Syst.	Stat. only	Stat. \oplus Syst.	Stat. only
2	3.20	3.22	3.18	3.20
3	3.38	3.39	3.35	3.37
4	3.51	3.52	3.48	3.50
5	3.60	3.61	3.58	3.59
6	3.67	3.68	3.64	3.66
7	3.73	3.74	3.71	3.72


TABLE II. The 95% C.L. lower limits on the allowed quantum gravity scale for various numbers of extra dimensions.

q* in Dijet Angular Distributions

Limits on q* star mass from $F_{\chi}(m_{ii})$

- Signal: Bump
- Frequentist CL_{s+b}
- 95% C.L. observed (expected) limit:
 - m(q*) > 2.64 TeV (2.12 TeV)
- High observed limit due to downward fluctuation of F_{χ} in data around 2.5 TeV

-8

-10

-12

1800

2000

2200

95% C.L. Quantile

Expected Limit variation (68%

2600 m(q*) [GeV]

2800

Measured Q QCD Prediction

2400