Supersymmetry Searches with 2 Photons + Jets + Missing Energy and Photon + Lepton + Missing Energy Final States

> Rachel Yohay University of Virginia Status of Higgs and BSM Searches at the LHC April 13, 2011

> > on behalf of the CMS collaboration

- General gauge mediation (GGM) searches at the LHC
 - Production mechanisms
 - Next-to-lightest superpartner (NLSP) type \rightarrow final state
- Bino NLSP: 2 photons + jets + missing transverse energy (ME_T)
 - Candidate event selection
 - Background estimation
 - Photon efficiency
 - Results
 - Interpretation in terms of simplified model spectra (SMS)
- Wino/bino co-NLSP: lepton + photon + jets + ME_T
 - Candidate event selection
 - Background estimation
 - Results
 - Interpretation in terms of SMS

- General gauge mediation (GGM) searches at the LHC
 - **Production mechanisms**
 - Next-to-lightest superpartner (NLSP) type → final state
- Bino NLSP: 2 photons + jets + missing transverse energy (ME_T)
 - Candidate event selection
 - Background estimation
 - Photon efficiency
 - Results
 - Interpretation in terms of simplified model spectra (SMS)
- Wino/bino co-NLSP: lepton + photon + jets + ME_T
 - Candidate event selection
 - Background estimation
 - Results
 - Interpretation in terms of SMS

General gauge mediation at the LHC

- General gauge mediation (GGM)
 - P. Meade, N. Seiberg, and D. Shih, Prog. Theor. Phys. Suppl. **177** (2009) 143 (arXiv:0801.3278v3 [hep-ph])
 - Definition of gauge mediation: the MSSM and the SUSY-breaking sector are linked only by nonzero values of the MSSM gauge coupling constants
 - Different theories of gauge mediation can arise from the single general framework
 - Prescription provided for calculating the soft masses of the spectrum
 - SUSY-breaking sector leads to mass relations between the sfermions, constraining the allowed parameter space
- Consequences for phenomenology
 - 1. Models with light squarks and gluinos not ruled out—ideal for LHC searches because of enhancement of gg PDF with respect to quarkantiquark
 - 2. Lightest neutralino NLSP can be bino, wino, or higgsino

GGM final states

Status of Higgs and BSM Searches at the LHC 11-13 April 2011

- General gauge mediation (GGM) searches at the LHC
 - Production mechanisms
 - Next-to-lightest superpartner (NLSP) type \rightarrow final state
- Bino NLSP: 2 photons + jets + missing transverse energy (ME_T)
 - Candidate event selection
 - Background estimation
 - Photon efficiency
 - Results
 - Interpretation in terms of simplified model spectra (SMS)
- Wino/bino co-NLSP: lepton + photon + jets + ME_T
 - Candidate event selection
 - Background estimation
 - Results
 - Interpretation in terms of SMS

Photon selection

- Candidate events must pass a photon high level trigger
 - First 27.5 pb⁻¹: unprescaled 30 GeV single photon trigger
 - Last 8.0 pb⁻¹: unprescaled 22 GeV diphoton trigger
 - Both triggers seeded by single 8 GeV electromagnetic calorimeter (ECAL) energy deposit
- Each candidate event contains at least 2 isolated photons
 - E_T > 30 GeV
 - Inconsistent with electromagnetic calorimeter (ECAL) noise
 - No matching hit in the silicon pixel detector

- lηl < 1.379
 - Within the ECAL barrel (EB) excluding the edges, and within the silicon tracker coverage
 - Less background from jets
 - Photons from neutralino decay tend to be produced centrally

Photon isolation criteria

- ECAL isolation energy $< 0.006E_T + 4.2 \text{ GeV}$
- HCAL isolation energy $< 0.0025E_T + 2.2 \text{ GeV}$
- Tracker isolation energy $< 0.001E_T + 2.0 \text{ GeV}$

HCAL energy in R < 0.15 cone around photon candidate ECAL energy of photon candidate < 0.05

not to scale

$$\sigma_{\eta\eta}^2 = \sum_{i=1}^{25} w_i (\eta_i - \bar{\eta})^2 / \sum_{i=1}^{25} w_i, \quad <0.013$$

Highest energy (photon seed) crystal where $w_i = \max(0, 4.7 + \ln(E_i/E))$, E_i is the energy of the *i*th crystal in a group of 5×5 centred on the one with the highest energy, and $\eta_i = \hat{\eta}_i \times \delta \eta$, where $\hat{\eta}_i$ is the η index of the *i*th crystal [3] and $\delta \eta = 0.0174$; *E* is the total energy of the group and $\bar{\eta}$ the average η weighted by w_i in the same group [20].

R. Yohay

Status of Higgs and BSM Searches at the LHC 11-13 April 2011

Jet selection

- Strong production guarantees that most events contain at least one hard jet
- Presence of jet activity suppresses fake ME_T backgrounds from beam halo and cosmic muon bremsstrahlung (equivalent to requiring a good vertex)

- Each candidate event contains at least 1 track-corrected jet (anti- k_T algorithm with R = 0.5)
 - E_T ≥ 30 GeV
 - IηI ≤ 2.6
 - Inconsistent with hadronic calorimeter (HCAL) noise
 - At least $\Delta R = 0.9$ away from both photon candidates

- General gauge mediation (GGM) searches at the LHC
 - Production mechanisms
 - Next-to-lightest superpartner (NLSP) type \rightarrow final state
- Bino NLSP: 2 photons + jets + missing transverse energy (ME_T)
 - Candidate event selection
 - Background estimation
 - Photon efficiency
 - Results
 - Interpretation in terms of simplified model spectra (SMS)
- Wino/bino co-NLSP: lepton + photon + jets + ME_T
 - Candidate event selection
 - Background estimation
 - Results
 - Interpretation in terms of SMS

Relevant backgrounds

- Dominant: **QCD with fake ME**T
 - Multijet: at least 2 jets misidentified as photons
 - γ+jet: 1 jet misidentified as a photon
 - QCD diphoton
- Subdominant: electroweak processes with real MET
 - $W(\rightarrow ev)\gamma$: electron misidentified as a photon
 - $W(\rightarrow ev)$ +jet: electron and jet misidentified as photons
- Negligible: irreducible backgrounds
 - Wyy (total cross section ~7 fb at 14 TeV LHC) [4]
 - Ζγγ

Estimating the QCD background

QCD control sample	Identical to photon except	
EM object = fake	•Fake MUST fail $\sigma_{\eta\eta}$ OR track isolation cut on slide 8 •Fake MAY fail the pixel match veto •Fake MUST pass Itl \leq 3 ns and $\Delta \phi$ (fake, fake) \geq 0.05 (to fight beam halo)	
EM object = electron	 Electron MUST fail the pixel match veto (i.e. it must have a pixel match) Electron MUST pass Itl ≤ 3 ns and Δφ(electron, electron) ≥ 0.05 (to fight beam halo) 	

- Use the fact that the electromagnetic (EM) energy resolution is much better than the hadronic energy resolution, so fake ME_T is wholly determined by the hadronic jets
- Find a data control sample with 2 wellmeasured EM objects, just like the candidate sample, to model the QCD fake ME_T spectrum
- Adjust for kinematic differences between the control and candidate samples by reweighting the ME_T spectrum of the control sample such that such that the p_T spectrum of its di-EM system matches that of the candidate sample
- Normalize the predicted QCD fake ME_T spectrum to the ME_T < 20 GeV region in the candidate sample, assuming negligible signal contamination there

"electron": passes tight ID cuts + pixel match "photon": passes same tight ID cuts + pixel match veto

Estimating the electroweak background

- Wγ and W+jet can enter the candidate sample if the W decay electron is sometimes misidentified as a photon
- Use the ey data control sample
 - Events with 1 object passing the electron criteria on slide 12 and 1 object passing the photon criteria on slides 7-8
 - Short version: e and γ differ ONLY in the presence/absence of a pixel match
- Scale the ME_T distribution of e_Y events by $f_{e \rightarrow \gamma}/(1-f_{e \rightarrow \gamma})$ to get the predicted electroweak background, where $f_{e \rightarrow \gamma}$ is the electron \rightarrow photon mis-ID rate
- Estimate $f_{e \to \gamma}$ by fitting the di-EM invariant mass spectra in the di-electron (slide 12) and $e\gamma$ samples

R. Yohay

Status of Higgs and BSM Searches at the LHC 11-13 April 2011

Check of the background estimation

- Question: Can the QCD background prediction method described on slide 12 correctly predict the QCD contribution to the eγ (W-like) sample?
- Answer: Yes
 - Reweight the di-electron ME_T spectrum such that the di-electron p_T spectrum matches the eγ di-EM p_T spectrum (i.e. use the method described on slide 12 to get a prediction for the QCD component of the eγ sample)
 - Observe an excess (esp. for $ME_T > 30$ GeV) of e γ events over the predicted QCD background
 - Excess is consistent with expected yield of Wγ and W+jet Monte Carlo (MC)

- General gauge mediation (GGM) searches at the LHC
 - Production mechanisms
 - Next-to-lightest superpartner (NLSP) type \rightarrow final state
- Bino NLSP: 2 photons + jets + missing transverse energy (ME_T)
 - Candidate event selection
 - Background estimation
 - Photon efficiency
 - Results
 - Interpretation in terms of simplified model spectra (SMS)
- Wino/bino co-NLSP: lepton + photon + jets + ME_T
 - Candidate event selection
 - Background estimation
 - Results
 - Interpretation in terms of SMS

Photon ID efficiency

- Photon ID cuts (ECAL/HCAL/track isolation, H/E, and $\sigma_{\eta\eta}$) designed to behave similarly for electrons and photons
 - Our definition of "electron" only differs from our definition of "photon" by the presence of a pixel match
- Lacking a large, clean source of photons in the data, take photon ID efficiency from MC
- Use Z→ee events in data and MC to measure the efficiency of the photon ID cuts on electrons
- Scale the signal MC acceptance × efficiency by the ratio of electron efficiencies in data and MC to get a **data-driven correction**

Signal acceptance

Status of Higgs and BSM Searches at the LHC 11-13 April 2011

- General gauge mediation (GGM) searches at the LHC
 - Production mechanisms
 - Next-to-lightest superpartner (NLSP) type \rightarrow final state
- Bino NLSP: 2 photons + jets + missing transverse energy (ME_T)
 - Candidate event selection
 - Background estimation
 - Photon efficiency
 - Results
 - Interpretation in terms of simplified model spectra (SMS)
- Wino/bino co-NLSP: lepton + photon + jets + ME_T
 - Candidate event selection
 - Background estimation
 - Results
 - Interpretation in terms of SMS

R. Yohay

Status of Higgs and BSM Searches at the LHC 11-13 April 2011

- General gauge mediation (GGM) searches at the LHC
 - Production mechanisms
 - Next-to-lightest superpartner (NLSP) type \rightarrow final state
- Bino NLSP: 2 photons + jets + missing transverse energy (ME_T)
 - Candidate event selection
 - Background estimation
 - Photon efficiency
 - Results
 - Interpretation in terms of simplified model spectra (SMS)
- Wino/bino co-NLSP: lepton + photon + jets + ME_T
 - Candidate event selection
 - Background estimation
 - Results
 - Interpretation in terms of SMS

Upper limit on GGM with bino-like neutralino

- Generation of "simplified model" GGM signal
 - Pythia 6.422 for hadronization and decay
 - Full CMS detector simulation based on GEANT
 - Production cross-section calculated with PROSPINO 2.1
 - PROSPINO for K-factors (1.4 on average with 20% variation depending on the model parameters)
 - Soft masses of squarks degenerate
 - Sleptons and all gauginos except the lightest neutralino have mass 1.5 TeV
- Bayesian upper limit calculation with flat prior à la PDG [7]
- Repeat for 3 different nuisance parameter PDFs: Gaussian, log-normal, and gamma; results are very similar (used log-normal in published calculation)

Exclusion contours

CMS limit

Tevatron limit

- General gauge mediation (GGM) searches at the LHC
 - Production mechanisms
 - Next-to-lightest superpartner (NLSP) type \rightarrow final state
- Bino NLSP: 2 photons + jets + missing transverse energy (ME_T)
 - Candidate event selection
 - Background estimation
 - Photon efficiency
 - Results
 - Interpretation in terms of simplified model spectra (SMS)
- Wino/bino co-NLSP: lepton + photon + jets + ME_T
 - Candidate event selection
 - Background estimation
 - Results
 - Interpretation in terms of SMS

Event selection

- $e+\gamma \text{ or } \mu+\gamma, \Delta R(I,\gamma) > 0.4$
- ≥1 good quality vertex (no jet requirement)
- Triggers
 - $e+\gamma$: unprescaled single electron trigger with 15 or 17 GeV E_T threshold
 - $\mu+\gamma$: unprescaled single muon trigger with 9, 11, or 15 GeV E_T threshold
- Photon selection defined on slides 7-8
- Trigger and selection efficiencies in data estimated with Z events; signal MC acceptance × efficiency corrected by data/MC efficiency scale factor as described on slide 16

Lepton selection	Efficiency scale factor
Electron	0.928 ± 0.015
Muon	0.990 ± 0.001

Electron selection

Cut	Value		Notes
	EB	EE	EB = ECAL barrel, EE = ECAL endcap
рт	>20 GeV	>20 GeV	
lηl	<1.444	1.566-2.1	1.444-1.566 is the crack between EB and EE
ECAL isolation	<0.07E⊤	<0.05E⊤	Same cones as on slide 8
HCAL isolation	<0.01E⊤	<0.025E⊤	Same cones as on slide 8
Track isolation	<0.09E _T	<0.04E⊤	Same cones as on slide 8
Missing track hits	≤0	≤0	Conversion rejection cut-(expected - actual) number of hits on track
$\Delta(\cot \theta)$	<0.02	<0.02	Conversion rejection $\text{cut}-\theta$ is the polar angle between the 2 conversion clusters
Dist	<0.02	<0.02	Conversion rejection cut—distance between the 2 conversion tracks when they are parallel
σ _{ηη}	<0.01	<0.03	
Δ φ in	<0.06	<0.03	Between the track momentum at the primary vertex and the cluster position
Δη _{in}	<0.004	<0.007	Between the track momentum at the primary vertex and the cluster position
H/E	<0.04	<0.025	

NB. This electron selection uses a dedicated track reconstruction and cluster matching. The "electron" on slide 12 is just an ECAL cluster with a matching pixel hit.

Status of Higgs and BSM Searches at the LHC 11-13 April 2011

Muon selection

Cut	Value	Notes
рт	>20 GeV	
lηl	<2.1	Geometrical acceptance of the muon high level trigger
Combined isolation	<0.15	Combined isolation = (ECAL isolation + HCAL isolation + track isolation)/(muon p_T), cone size R = 0.3, muon track p_T and calorimeter energy subtracted
Reconstruction algorithm	Global and tracker	Tracker muon = reconstructed from tracker hits only; global muon = reconstructed from tracker and muon station hits
Muon chamber hits	≥1	
Tracker muon match	≥2 muon chambers	
Tracker hits	>10	
Pixel hits	≥1	
χ²/ndof	<10	Global muon track fit
ld _{xy} l	<2 mm	Transverse impact parameter
High level trigger match	Yes	

- General gauge mediation (GGM) searches at the LHC
 - Production mechanisms
 - Next-to-lightest superpartner (NLSP) type → final state
- Bino NLSP: 2 photons + jets + missing transverse energy (ME_T)
 - Candidate event selection
 - Background estimation
 - Photon efficiency
 - Results
 - Interpretation in terms of simplified model spectra (SMS)
- Wino/bino co-NLSP: lepton + photon + jets + ME_T
 - Candidate event selection
 - Background estimation
 - Results
 - Interpretation in terms of SMS

Relevant backgrounds

Syst.(10% from halving/doubling factorization and renormalization scale) \oplus

- Dominant: $W(\rightarrow ev)\gamma$, $W(\rightarrow \mu v)\gamma$
 - Modeled with **MadGraph MC**, tune D6T

syst.(<2% PDF uncertainty [6]) ⊕ syst.(4% luminosity)

- K-factors estimated from BAUR NLO generator using CTEQ66 NLO PDF sets
- K-factors range from ~1.5-6, depending on photon E_T
- Leading order photon E_T spectrum modified by K-factors, but ME_T and M_T distributions are much more stable with respect to NLO effects
- Subdominant: jets faking photons in events with real MET
 - $W(\rightarrow ev)$ +jet, $W(\rightarrow \mu v)$ +jet
- Subdominant: electrons faking photons
 - Z→ee
 - ttbar with at least 1 W decaying to an electron
- Subdominant: QCD with fake MET
- Negligible: ttbar+γ

Estimating the jet $\rightarrow \gamma$ backgrounds

- Jet $\rightarrow \gamma$ fake rate determination
 - Muon-, jet-, and photon-triggered datasets to determine the fake rate
 - Fake rate = (# of tight photons)/(# of fakeable objects)
 - "Tight photon" same as defined on slides 7-8
 - Real photon component in tight photon sample extracted from fit to MC $\sigma_{\eta\eta}$ template and subtracted
 - Strong dependence on p_T, no dependence on lηl in EB
- ME_T spectrum of lepton + fakeable object data control sample weighted by E_Tdependent fake rate

fake rate = 0.0159 +
$$\frac{2431}{p_T^{\gamma 2.67}}$$
 ± 20%

Fakeable object definition:

Stat.

syst.(isolation template)
syst.(fit residuals)

Cut	Value		Cut	Value
n			ECAL isolation	>(0.006E _T + 4.2 GeV)
μ	>20 Gev		c	pr
lηl	<1.4	and	HCAL isolation	>(0.0025E _T + 2.2 GeV)
ECAL isolation	<min(5 (0.006e<sub="" ×="">T + 4.2 GeV), 0.2E_T)</min(5>	anu	c	or
HCAL isolation	$< \min(5 \times (0.0025E_T + 2.2 GeV) = 0.2E_T)$		Track isolation	>(0.001E⊤ + 3.5 GeV)
		or		or
Track isolation	<min(5 (0.001e<sub="" ×="">T + 3.5 GeV), 0.2E_T)</min(5>		σ _{ηη}	>0.013

Estimating the $e \rightarrow \gamma$ backgrounds

	QCD control sample	Identical to photon except
	EM object = fake	•Fake MUST fail $\sigma_{\eta\eta}$ OR track isolation cut on slide 8 •Fake MAY fail the pixel match veto •Fake MUST pass Itl \leq 3 ns and $\Delta\phi$ (fake, fake) \geq 0.05 (to fight beam halo)
fakeable object	EM object = electron	 Electron MUST fail the pixel match veto (i.e. it must have a pixel match) Electron MUST pass Itl ≤ 3 ns and Δφ(electron, electron) ≥ 0.05 (to fight beam halo)

- Use $f_{e \rightarrow \gamma}$ from slide 16
- Fakeable object is the "electron" defined on slide 12
- ME_T spectrum of lepton + fakeable object data control sample weighted by $f_{e \rightarrow \gamma}$
 - If lepton is an electron (as on slide 25) in EB with p_T > 30 GeV, event weighted by 2f_{e→γ} (in CMS photon reconstruction, the fakeable object could also be reconstructed as a good electron)

Estimating the QCD background

Identical to photon except: •Electron MUST fail the pixel match veto (i.e. it must have a pixel match) •Electron MUST pass Itl \leq 3 ns and $\Delta \varphi$ (electron, electron) \geq 0.05 (to fight beam halo)

- Di-EM p_T reweighting method employed by 2-photon analysis (slide 12)
- 2 independent data control samples
 - 1. Primary: di-electron (electron as defined on slide 12; high statistics)-
 - 2. Cross-check: **fake lepton** (lepton with loosened isolation or shower shape) + **EM object** (photon with loosened track isolation and no $\sigma_{\eta\eta}$ requirement)
- 2 weights to apply to each control sample
 - Di-EM p_T weight: reweight the ME_T spectra of the control samples such that the p_T spectrum of the di-electron or (fake lepton)-(EM object) system matches that of the candidate lepton-photon system
 - 2. p_T^I weight to account for significantly different lepton kinematics between the candidate and control samples: reweight the ME_T spectra of the control samples such that the p_T spectrum of the electron (e.g. the electron fakeable object in the primary control sample) or fake lepton matches that of the candidate selected lepton
- Normalization to the $ME_T < 30$ GeV region, assuming negligible signal contamination there

e+γ object p_T

- M_T > 70 GeV
- Wγ MC plus jet → γ and e → γ data-derived background estimates shown
- Good agreement between data and predicted background

μ+γ object pτ

- M_T > 70 GeV
- Wγ MC plus jet → γ and e → γ data-derived background estimates shown
- Good agreement between data and predicted background

- General gauge mediation (GGM) searches at the LHC
 - Production mechanisms
 - Next-to-lightest superpartner (NLSP) type → final state
- Bino NLSP: 2 photons + jets + missing transverse energy (ME_T)
 - Candidate event selection
 - Background estimation
 - Photon efficiency
 - Results
 - Interpretation in terms of simplified model spectra (SMS)
- Wino/bino co-NLSP: lepton + photon + jets + ME_T
 - Candidate event selection
 - Background estimation
 - Results
 - Interpretation in terms of SMS

Candidate ME_T spectra

R. Yohay

Status of Higgs and BSM Searches at the LHC 11-13 April 2011

- General gauge mediation (GGM) searches at the LHC
 - Production mechanisms
 - Next-to-lightest superpartner (NLSP) type \rightarrow final state
- Bino NLSP: 2 photons + jets + missing transverse energy (ME_T)
 - Candidate event selection
 - Background estimation
 - Photon efficiency
 - Results
 - Interpretation in terms of simplified model spectra (SMS)
- Wino/bino co-NLSP: lepton + photon + jets + ME_T
 - Candidate event selection
 - Background estimation
 - Results
 - Interpretation in terms of SMS

Upper limit on GGM with wino/bino co-NLSP

- Generation of "simplified model" GGM signal
 - Squark and gluino masses approximately equal
 - $\tan \beta = 2$
 - NLSP mass > 100 GeV
 - Pythia 6.422 for hadronization and decay
 - Full CMS detector simulation based on GEANT
 - PROSPINO for K-factors (1.4 on average with 20% variation depending on the model parameters)
- Bayesian upper limit calculation with flat prior à la PDG [7]
 - Electron and muon channels combined
 - Gaussian shape for nuisance parameters

Upper limit on GGM with wino/bino co-NLSP

 Tevatron limits significantly extended

Conclusions

Highest ME_T μ + γ event

- Searches in di-photon and photon+lepton final states are powerful tools for observing SUSY
 - Clean trigger objects
 - Manageable backgrounds that can mostly be estimated from data
- CMS is beginning to explore the full GGM parameter space
 - Results presented in terms of simplified models to ease interpretation
- No SUSY so far, but where haven't we looked yet?
 - Higgsino-like neutralino decaying to Z+gravitino
 - Long-lived neutralinos

• ..

Stay tuned in 2011!

Status of Higgs and BSM Searches at the LHC 11-13 April 2011

ECAL noise cleaning

- 1. Form 3 × 3 matrix of crystals around the photon seed crystal
- 2. Find the 2 highest energy crystals within the matrix
- 3. If the sum of the energies of the 2 highest energy crystals divided by the sum of the energies of all 9 crystals within the matrix exceeds 0.95, reject the photon as ECAL noise

HCAL noise cleaning

- 1. $f_{HPD} \le 0.98$, where f_{HPD} is the fraction of the jet's energy contributed by the highest energy hybrid photodetector
- 2. n90Hits > 1, where n90Hits is the minimum number of HCAL channels containing 90% of the jet's energy
- 3. EMF \ge 0.01, where EMF is the electromagnetic fraction of the jet's energy

See [10]

Jet-plus-tracks (JPT) algorithm

- Main idea: replace poorly measured charged hadron energies in calorimeter with well-measured charged hadron momenta in tracker to improve the overall jet energy resolution
 - 1. Correct the calorimeter jet for zero suppression (i.e. effect of small, positive calorimeter cell readout threshold)
 - 2. Subtract the expected average energy of charged particles inside the jet cone from the jet total energy, and add in the measured momenta of the tracks in the cone
 - 3. Add to the jet energy the momenta of tracks that originate inside the jet cone but bend outside of it at the calorimeter surface
 - 4. Correct for track-finding inefficiency
 - 5. Subtract the average muon calorimeter deposit from the jet energy and add in the measured muon momentum
- See [11] for details and performance in LHC data

$f_{e \rightarrow \gamma}$ calculation

The number of events in the di-electron sample is given by

$$N_{ee} = f_{e \to e}^2 N_{Z \to ee}$$

where $f_{e \to e}$ is the efficiency to correctly identify an electron via pixel match and $N_{Z \to ee}$ is the true number of Z→ee events. The number of events in the $e\gamma$ sample due to misidentification of 1 Z electron as a photon is given by

$$N_{e\gamma}^Z = 2f_{e\to e}(1 - f_{e\to e})N_{Z\to ee}$$

Solving for $f_{e \to e}$,

$$f_{e \to e} = \frac{1}{1 + \frac{1}{2} \frac{N_{e\gamma}^Z}{N_{ee}}}$$

The number of events in the e γ sample due to correctly identifying a W electron is given by

$$N_{e\gamma}^W = f_{e \to e} N_W$$

where N_W is the number of true $W \rightarrow e\nu$ events. The number of $\gamma\gamma$ events from W electron misidentification is given by

$$N_{\gamma\gamma}^{EW} = (1 - f_{e \to e})N_W$$

where we have neglected the contribution from Z electron misidentification since it is small (i.e., $f_{e\to\gamma}$ is small and the Z contribution involves $f_{e\to\gamma}^2$, since both electrons have to be misidentified). Since

$$f_{e \to e} = 1 - f_{e \to \gamma}$$

solving for $N_{\gamma\gamma}^{EW}$

$$N_{\gamma\gamma}^{EW} = \frac{f_{e \to \gamma}}{1 - f_{e \to \gamma}} N_{e \to \gamma}$$

R. Yohay

Status of Higgs and BSM Searches at the LHC 11-13 April 2011

Background averaging

uncorrelated errors					Gaussian nuisance parameter PDFs: 0.83 ± 0.34
Туре	Number of events	Stat error	Reweight error	Normalization error	weighted average assuming
$\gamma\gamma$ events Electroweak background estimate	$\begin{array}{c}1\\0.04\pm0.03\end{array}$	±0.02	₩0.0	±0.01	log-normal nuisance paramete
QCD background estimate (ff)	0.49 ± 0.37	±0.36	±0.06	± 0.07	1 D1 3. 1.17 ± 0.50
QCD background estimate (ee)	1.67 ± 0.64	± 0.46	± 0.38	±0.23	
Total background (using <i>ff</i>)	0.53 ± 0.37				
Total background (using ee)	1.71 ± 0.64				
Combined total background	1.2 ± 0.8				
Expected from GGM sample point	8.0 ± 1.7				
			→ correla	ated error (14%	%)

- Find the weighted average of the di-electron and di-fake QCD background estimates, assuming log-normal PDFs with widths given by the uncorrelated errors
- Add in quadrature the common error of 14% due to normalization in the low-ME_T region to the error from 2. step 1
- Add the electroweak background estimate to the average from step 1, and add its error in quadrature to the 3. error from step 2
- Add in quadrature, as a systematic error, the difference between the combined background estimate and the 4. di-fake estimate to the error from step 3

weighted average assuming uncorrelated backgrounds and

Good vertex criteria

Cut	Value	Notes
ndof	>4	
Izl	<24 cm	Reconstructed z position of vertex
r	<2 cm	Reconstructed x-y position of vertex

Fake lepton and EM object selection

Fake electron			
Cut	Value		
	EB	EE	
рт	>20 GeV	>20 GeV	
lηl	<1.444	1.566-2.1	
ECAL isolation	<0.07E _T	<0.05E⊤	
HCAL isolation	<0.01E⊤	<0.025E⊤	
Track isolation	<0.09E⊤	<0.04E⊺	
Missing track hits	≤0	≤0	
$\Delta(\cot \theta)$	<0.02	<0.02	
Dist	<0.02	<0.02	
Δφ _{in}	<0.06	<0.03	
Δη _{in}	<0.004	<0.007	

EM object			
Cut	Value		
рт	>30 GeV		
lηl	<1.4		
ECAL isolation	<(0.006E _T + 4.2 GeV)		
HCAL isolation	<(0.0025E _T + 2.2 GeV)		
Track isolation	<10 GeV		
H/E	<0.05		
Noise-cleaned	Yes		
Pixel match No			

Fake muon			
Cut	Value		
ρτ	>20 GeV		
lηl	<2.1		
Combined isolation	0.15-0.25		
Reconstruction algorithm	Global and tracker		
Muon chamber hits	≥1		
Tracker muon match	≥2 muon chambers		
Tracker hits	>10		
Pixel hits	≥1		
χ²/ndof	<10		
ld _{xy} l	<2 mm		
High level trigger match	Yes		

Fake electron: electron with only isolation requirements

Fake muon: muon with relaxed isolation requirement

EM object: photon with relaxed track isolation and no shower shape requirement

R. Yohay

Status of Higgs and BSM Searches at the LHC 11-13 April 2011

High photon E_T events

Channel	Expected background with $E_T^{\gamma} > 120 \text{ GeV}$	Observed events with $E_T^{\gamma} > 120 \text{ GeV}$	Probability to observe ≥ 2 events with $E_T^{\gamma} > 120$ GeV in each channel at the same time
e+γ	0.76 ± 0.18	2	L 100/
μ+γ	0.93 ± 0.21	2	>10%

 Good agreement between background predictions in electron and muon channels

References

- 1. C. Quigg, arXiv:0908.3660v2 [hep-ph] (2009).
- 2. CERN/LHCC 97-33 (1997).
- 3. CMS Collaboration, CERN-PH-EP/2010-053 (2010).
- 4. G. Bozzi, F. Campanario, M. Rauch, D. Zeppenfeld, arXiv:1103.4613v1 [hep-ph] (2011).
- 5. CMS Collaboration, arXiv:1103.0953v2 [hep-ex] (2011).
- 6. D. Bourilkov, R.C. Group, M. R. Whalley, arXiv:hep-ph/0605240v2 (2006); http:// www.hep.ucl.ac.uk/pdf4lhc/PDF4LHCrecom.pdf (2010).
- 7. K. Nakamura et al., J. Phys. G **37** (2010) 075021.
- 8. J. T. Ruderman, D. Shih, arXiv:1103.6083v1 (2011).
- 9. CMS-PAS-EGM-10-005 (2010).
- 10. CERN-CMS-DP-2010-014 (2010).
- 11. CMS-PAS-JME-09-002 (2009); CMS-PAS-JME-10-003 (2010).