

Run Number: 165815, Event Number: 12365502

Date: 2010-09-28 03:23:27 CEST

LPCC workshop: Status of Higgs and BSM searches at the LHC

Till Eifert (CERN) on behalf of ATLAS CERN, April 11-13, 2011

ATLAS SUSY searches assuming R-parity conservation

- O-leptons + Jets + E_T^{miss} Submitted to PLB (25 Feb 2011), arxiv:1102.5290
- I-leptons + Jets + E_T^{miss} PRL 106, 131802 (2011), arxiv:1102.2357
- 2-leptons + E_T^{miss} Submitted to EPJC letters (31 Mar 2011), arxiv:1103.6208, arxiv:1103.6214
- ► \geq 3-leptons + Jets + E_T^{miss} ATLAS-CONF-2011-039

- O-leptons + b-jets + E^{miss} Submitted to PLB (22 mar 2011), arxiv: 1103.4344
- ► \geq I-leptons + b-jets + E_T^{miss} Submitted to PLB (22 mar 2011), arxiv: 1103.4344

Odd-lepton numbers covered in this talk

one lepton + jets + Et^{miss}

- First ATLAS SUSY publication PRL 106, 131802 (2011), arxiv:1102.2357
- Pre-selection
 Single el/mu triggers
 data & detector quality
 good primary vertex
- □ Kinematic selection :
 I-lepton (el/mu) with pT > 20 GeV
 ≥ 3-jets with pT > 60, 30, 30 GeV
- Data and simulation in good agreement

I-lep Event selection : Signal Region

Simple counting-experiment in SR

- Pre-selection as described before
- Kinematic selection as described before
- Signal-enhanced region (SR)
 - 1. m_T > 100 GeV
- 2. $E_T^{miss} > 0.25 \text{ x } m_{eff}$
- 3. $m_{eff} > 500 \text{ GeV}$

Selection based on benchmark SUSY signal and SM bkg

$$m_{\rm T} = \sqrt{2 \cdot p_T^{\ell} \cdot E_{\rm T}^{\rm miss} \cdot (1 - \cos(\Delta \phi(\ell, E_{\rm T}^{\rm miss})))}$$

transverse scalar mass (HT):

$$H_T = p_T^\ell + \sum_{i=1}^3 p_T^{jet_i}$$

"effective" mass (Meff): $m_{\rm eff} = H_T + E_{\rm T}^{\rm miss}$

I-lep Event selection : Signal Region

Simple counting-experiment in SR

I-lep Event selection : Signal Region

Simple counting-experiment in SR

- Pre-selection as described before
- Kinematic selection as described before
- Signal-enhanced region (SR)
- 1. m_T > 100 GeV
- 2. $E_T^{miss} > 0.25 \text{ x } m_{eff}$
- 3. $m_{eff} > 500 \text{ GeV}$

Selection based on benchmark SUSY signal and SM bkg

1 obs. event in each SR Exp. bkg: 1.8±0.8 (el), 2.3±0.9 (mu)

transverse scalar mass (HT):

$$H_T = p_T^\ell + \sum_{i=1}^3 p_T^{jet_i}$$

"effective" mass (Meff): $m_{\rm eff} = H_T + E_{\rm T}^{\rm miss}$

-lep Background Control Regions

Backgrounds are determined from data in control regions.

 M^W_T [GeV]

- Pre-selection as described before
- Kinematic selection
 as described before

W control region (WR)

- 1. $40 \text{ GeV} < m_T$ < 80 GeV
- 2. $30 \text{ GeV} < E_T^{\text{miss}} < 80 \text{ GeV}$
- 3. None of 3 selected jets is b-tagged

Top control region (TR)

- 1. 40 GeV < m_T < 80 GeV
- 2. $30 \text{ GeV} < E_T^{\text{miss}} < 80 \text{ GeV}$
- 3. ≥ 1 of 3 selected jets is b-tagged
- QCD control region (QR)
- 1. m⊤ < 40 GeV
- 2. $E_T^{miss} < 40 \text{ GeV}$

Simultaneous signal and background fit

with systematics treated as nuisance parameters

- Top, V+jets bkg in SR: MC-based extrapolation of Data from WR,TR to SR
- QCD contamination in WR,TR: MC-based extrapolation of Data from QR to WR,TR

CRs with "XR" labels are used for validation (more later)

I-lep Background Control Regions

effective mass (meff) distribution in Top CR (left) and W CR (right)

MC-based extrapolation to SR, uncertainties taken into account, incl. theory uncertainty, JES, JER

Extrapolation validated in several extra control regions (see next slide)

QCD in SR: estimated from data using "matrix method"

Use additional data sample with relaxed lepton identification criteria, where significantly more QCD jets fake a lepton.

QCD in SR, upper limits: **0^{+0.3} (el), 0^{+0.5} (mu)** Upper-limit dominated by uncertainty from low statistics in "loose" and "tight" SR data samples. I-lep

Results & Validation

Compare bkg extrapolated to other regions with data (also the meff cut and b-tagging were tested)

No excess is observed

Electron channel	Signal region		
Observed events	1		
Fitted top events Fitted W/Z events Fitted QCD events	$\begin{array}{c} 1.34 \pm 0.52 \ (1.29) \\ 0.47 \pm 0.40 \ (0.46) \\ 0.0^{+0.3}_{-0.0} \end{array}$		
Fitted sum of background events	1.81 ± 0.75		
Muon channel	Signal region		
Observed events	1		
Fitted top events Fitted W/Z events Fitted QCD events	$\begin{array}{c} 1.76 \pm 0.67 \ (1.39) \\ 0.49 \pm 0.36 \ (0.71) \\ 0.0^{+0.5}_{-0.0} \end{array}$		
Fitted sum of background events	2.25 ± 0.94		

Over-constrain simultaneous bkg-fit by adding additional CRs --> goodness-of-fit

found as expected for statistically compatible samples

ATLAS

background fit

p-value: 72%

80

78

Electron Channel

Goodness of extended

82 84 86 88

minimum minus log-likelihood

by bkg model

I-lep Interpretation : MSUGRA/CMSSM

One-sided limit based on observed CL_{s+b}

- MSUGRA/CMSSM used for comparison
- Future: explore more model-independent interpretations

Signal-model independent exclusion result :

Upper limit on $\sigma_{\text{eff}} = \sigma \times \text{Acceptance } \times \epsilon$ 0.065 pb (el channel) 0.073 pb (mu channel)

0+1 lep Interpretation : MSUGRA/CMSSM

NEW: Combined exclusion of 0 and 1-lepton analyses

One-sided limit based on observed CL_{s+b}

Till Eifert (CERN); SUSY Searches with leptons + jets + Etmiss; LPCC workshop, April 13 2011

bjets leptons + b-jets + Et miss

- 0, 1-lepton channels also studied for events with b-tag to enhance sensitivity to 3rd generation Submitted to PLB, arxiv:1103.4344
- 3rd generation (sbottom, stop) can be lighter than other squarks.
- Slightly modified selection criteria

0-lepton	1-lepton		
Pre-selections cuts:			
Data Quality, Trigger requirements			
clean up for misidentified jets: electron fiduciality,			
\geq 1 primary vertex with \geq 5 tracks			
no-lepton ($p_{\rm T} > 20 { m GeV}$)	\geq 1 lepton ($p_{\rm T}$ > 20 GeV)		
jet $p_{ m T} > 120, 30, 30~{ m GeV}, \eta < 2.5$	jet $p_{ m T} > 60, 30$ GeV, $ \eta < 2.5$		
$E_{ m T}^{ m miss} > 100~{ m GeV}$	$E_{\mathrm{T}}^{\mathrm{miss}} > 80~\mathrm{GeV}$		
$E_{\mathrm{T}}^{\mathrm{miss}}/M_{\mathrm{eff}}>0.2$	_		
At least 1 b-tagged jet (SV0, $L/\sigma(L) > 5.72$, $p_{\rm T} > 30 {\rm GeV}$, $ \eta < 2.5$)			
minimum $\Delta \phi > 0.4$ rad	$M_{\rm T} > 100~{ m GeV}$		

0-lepton + b-jets + Et^{miss} :

Search for Sbottom is lightest squark scenarios (see talk from M. Flowerdew)

1-lepton + b-jets + Et^{miss} :

Search for stop is lightest squark scenarios (this talk)

Signal-Regions: 0-lepton : $m_{eff} > 600 \text{ GeV}$ 1-lepton : $m_{eff} > 500 \text{ GeV}$

SM Backgrounds

Region	Data	Monte Carlo
A: $40 < m_{\rm T} < 100 \text{ GeV}$ and $m_{\rm eff} < 500 \text{ GeV}$	103	105.1 ± 1.5
B: $m_{\rm T} > 100 { m ~GeV}$ and $m_{\rm eff} < 500 { m ~GeV}$	46	35.9 ± 0.5
C: $40 < m_{\rm T} < 100 \text{ GeV}$ and $m_{\rm eff} > 500 \text{ GeV}$	33	40.1 ± 0.8
D: $m_{\rm T} > 100 { m ~GeV}$ and $m_{\rm eff} > 500 { m ~GeV}$	9	13.5 ± 0.4
Estimation	14.7 ± 3.7	13.7 ± 0.4

Nominal MC expectation $N_D = 13.5$

QCD background :

Upper-limit in SR is set using data-driven technique (matrix-method): **0**^{+0.4}

Non-QCD background :

ttbar, V+jets backgrounds are estimated from sidebands in m_T , m_{eff} .

- ➡ exploit low variable correlation
- ➡ good data-estimate MC agreement

 $m_T = 40 - 100 \text{ GeV}$

bjets

Results

Data and SM predictions in SR agree within uncertainties.

	0-lepton	1-lepton	1-lepton	
		Monte Carlo	data-driven	
$t\bar{t}$ and single top	12.2 ± 5.0	12.3 ± 4.0	14.7 ± 3.7	
W and Z	6.0 ± 2.0	0.8 ± 0.4	-	
QCD	1.4 ± 1.0	0.4 ± 0.4	$0^{+0.4}_{-0.0}$	
Total SM	19.6 ± 6.9	13.5 ± 4.1	14.7 ± 3.7	
Data	15	9	9	

Set one-sided exclusion limits based on observed CL_{s+b}

Signal-model independent exclusion result :

Upper limit on $\sigma_{\text{eff}} = \sigma \times \text{Acceptance} \times \epsilon$ 0.32 pb (1-lepton channel)

bjets Interpretation : phenomenological MSSM

bjets Interpretation : MSUGRA/CMSSM

- Interpretation within MSUGRA/ CMSSM
- Combination of 0 and 1-lepton channels with b-jets
- □ Here: large $tan(\beta)=40$ scenario, sbottom, stop lighter than in low $tan(\beta)$ scenarios
- Greatest sensitivity from 0-lep channel

Exclusion of

gluinos below 500 GeV for the m₀ range 100 GeV - 1 TeV **stops, sbottoms** below ~470, ~550 GeV respectively across the plane

If A₀=0 => A₀=-500 :

sbottom and stop masses decrease by ~10% and ~30% respectively. 1-lepton sensitivity extends 0-lepton by ~20 GeV in $m_{1/2}$ for $m_0 < 600$ GeV

Multi-leptons + jets + Et^{miss}

Channel:

 \geq 3 leptons (e,mu) + \geq 2 jets + E_T^{miss} ATLAS-CONF-2011-039

- multi-lepton final states from

 - □ third generati $\tilde{g} \rightarrow t\tilde{t} \rightarrow Wb\tilde{t}$, to W bosons, e.g.
- very little SM background

multi-lepton final state example

multi-lep

Results

- □ Event pre-selection ≥3 leptons (el/mu)
- □ Signal-selection ≥2 jets with pT > 50 GeV $E_T^{miss} > 50 \text{ GeV}$

Z boson veto:

invariant mass of same-flavour opposite-sign (SFOS) lepton pairs is required to be at least 5 GeV off from Z mass

DY veto:

invariant mass of SFOS lepton pairs > 20 GeV

Using MC prediction for SM background

After ≥3 leptons pre-selection

Multilep. events	All	eee	ееµ	еµµ	μμμ
tī	0.68±0.16	0.032±0.016	0.24 ± 0.07	0.31±0.08	0.096 ± 0.030
Z backgrounds	15.6±1.3	3.8±0.8	1.60 ± 0.34	7.9 ± 1.0	2.4±0.4
Other backgrounds	0.28±0.13	0.02 ± 0.14	0.03 ± 0.06	0.21±0.09	0.01 ± 0.11
Total SM	16.6±1.3	3.8±0.8	1.9±0.4	8.4±1.0	2.5±0.4
Data	19	2	1	10	6

multi-lep Interpretation : MSUGRA/CMSSM

Signal-model independent exclusion result :

Upper limit on $\sigma_{\text{eff}} = \sigma \times \text{Acceptance} \times \epsilon$ 62 fb

One-sided limit based on observed CL_{s+b}

multi-lep Interpretation : Phenomenological MSSM

Phenomenological MSSM scenario:

- ▶ bino-like LSP, wino-like chi χ^{\pm_1} and χ^{0_2}
- decays w/ sleptons enhance leptons
- ▶ 3rd generation scalars at very high mass

For m(squark) > m(gluino) : BR(gluino->LSP) increases to ~90%

For m(gluino) = m(squark) + 10 GeV **Exclusion** of **squarks** below 480 (600) GeV in the "compressed" ("light neutralino") scenario

multi-lep Interpretation : Phenomenological MSSM

Phenomenological MSSM scenario:

- ▶ bino-like LSP, wino-like chi χ^{\pm_1} and χ^{0_2}
- decays w/ sleptons enhance leptons
- ▶ 3rd generation scalars at very high mass

Right plot

- right-handed sfermions pushed to high mass
- cross-section slightly reduced
- lepton fraction increased (right-handed squarks decay to bino-like LSP)

For m(gluino) = m(squark) + 10 GeV **Exclusion** of **squarks** below 540 (670) GeV in the "compressed" ("light neutralino") scenario

Summary

► LHC SUSY searches have begun

- ➡ Presented results from 2010 data in search channels
 I-leptons + Jets + E_T^{miss} ≥ I-leptons + b-jets + E_T^{miss} ≥ 3-leptons + Jets + E_T^{miss}
- Data agree with SM expectation within uncertainties
- No SUSY "just around the corner" of LEP/Tevatron limits
- Limits extend up to M_{gluino} = M_{squark} > 815 GeV (MSUGRA/CMSSM)

Backup Slides

Till Eifert (CERN); SUSY Searches with leptons + jets + Etmiss; LPCC workshop, April 13 2011

bjets Interpretation : MSUGRA/CMSSM

If A₀=0 => A₀=-500 :

sbottom and stop masses decrease by ~10% and ~30% respectively. 1-lepton sensitivity extends 0-lepton by ~20 GeV in $m_{1/2}$ for $m_0 < 600$ GeV