Sy

rrereerer ‘m‘

%

Hot QCD Matter

Peter Jacobs
Lawrence Berkeley National Laboratory/CERN

Lecture 1: Tools

Lecture 2: Initial conditions: partonic structure and global observables
Lecture 3: Collective flow and hydrodynamics

Lecture 4: Jets and other hard probes
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My approach to these lectures

The field of hot QCD matter spans the boundaries of nuclear, particle and
condensed matter physics, and string theory

The field is also relatively young, with many phenomena not yet understood on a
fundamental level

Think about it more like Condensed Matter Physics than Particle Physics: the
Lagrangian is known precisely (QED, QCD), but many interesting phenomena
cannot be calculated from first principles

=>» Extensive use of effective theories and modeling

This is an opportunity for new ideas and concepts, but also a barrier to the
outsider to sort out what is really known and what is conjectured

| will make no attempt to be comprehensive
Rather, | will discuss a limited number of topics that are well-established
experimentally and have a connection to well-founded theory
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Outline: Lecture 1

Theory Tools
*Basics of QCD
Finite Temperature QCD

Experimental Tools
«Colliders
eDetectors

Analysis Tools

*Relativistic Kinematics
*Characterization of nuclear collisions
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Relics could be visible for a strongly
| first-order transition

e.g. local baryon number
fluctuations affect primordial
nucleosynthesis

Particle Data Group, LBNL (©) 2000. Supported by DOE and NSF

Hot QCD Matter - Lecture 1




Outline: Lecture 1

Theory Tools
*Basics of QCD
Finite Temperature QCD

Experimental Tools
«Colliders
eDetectors

Analysis Tools

*Relativistic Kinematics
*Characterization of nuclear collisions

6/14/12 Hot QCD Matter - Lecture 1



Quantum Chromo-dynamics: the field theory of
the strong (nuclear) force

Same basic structure as QED ks Gluons
(electromagnetism).... 5
I . color a=1,....,8
....except that gluons (“photons” of strong , i
spin €
force) carry (color) charge... H

LY

....s0 they interact among
Dynamics: Generalized Maxwell (Yang; themselves, generating much

more complex structures...
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Field theory: “running” of the coupling

Consider the interaction of two elementary particles:

Momentum transfer Q?

small Q° = large distance scales
large Q? = small distance scales

Quantum mechanics:
Virtual pairs (loops) screen bare interaction
= momentum-dependent interaction strength
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Running of the coupling: QED vs QCD

aO

2

g

4p

QED:

negative

1 1 /1 OQ(MJ
a(QZ) a(,uz 37 75

Smaller | Q?| (larger distance) = weaker coupling
e similar to screening of charge in di-electric material

QCD:

a()

~ 1 @Ior flavor
( \ 127

=+(33-12)/12x = positive!

Smaller | Q?| (larger distance) = larger coupling

And that makes a huge difference!
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Now let’s think about “matter”

Phase diagram of water Phase diagram of QCD
(simplified) (simplified)
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Quantitative QCD thermodynamics
Finite temperature QCD calculated numerically on the lattice (uz=0)

Slow convergence to non-interacting Steffan-Boltzmann limit
What carries energy - complex bound states of g+g? “strongly-coupled” plasma?

2
T 4

Energy density | |~ 3g9 OporT SB

&
_I__4

S. Borsanyi et al., JHEP 1011, 077 (2010)

200 400 600 300 1000

Cross-over, not sharp phase transition Temperature [MeV]
(like ionization of atomic plasma)
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Exploration of hot QCD Matter:
what are the questions? (partial list)

What is the nature of QCD Matter at finite temperature?
« What is its phase structure?
« What is its equation of state?
* What are its effective degrees of freedom?

* Is it a (trivial) gas of non-interacting quarks and gluons, or a fluid of
interacting quasi-particles?

* What are its symmetries?
* Is it correctly described by Lattice QCD or does it require new
approaches, and why?
What are the dynamics of QCD matter at finite temperature?
* What is the order of the (de-)confinement transition?
« How is chiral symmetry restored at high T, and how?
* Is there a QCD critical point?
» What are its transport properties?
Can hot QCD matter be related to other physical systems?

Can we study hot QCD matter experimentally?
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Studying hot QCD in the Laboratory:
high energy collisions of heavy nuclel

Model calculation

PbPb collisions at the LHC
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" Particle Data Group, LBNL, © 2000. Supported by DOE and NSF
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Experimental exploration of hot QCD Matter:
what are the Issues?

Intensive thermodynamic quantities (T, P, €, u,]) are only defined
for systems in (quasi- or local-) equilibrium
* QCD Lattice calculates equilibrated matter (e.g. at fixed T)

But nuclear collisions are highly dynamic:
* “Fireball” starts blowing apart the instant it 1s generated
* Fireball lifetime ~ few fm/c
* N0 a priori reason that quasi-equlibration should be
achieved on this time-scale

No ab initio theory to describe full dynamical evolution of the
fireball
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Experimental study of hot QCD Matter:
Strategy

Experiment:
* No ab initio theory =» interpretation via comparison to reference systems:
p+p, p/d+A, light ion collisions,...
* Vary system size: quantitative control over collision geometry
 Choose observables with close connection to theory and controlled modeling
 Over-determined measurements: multiple, systematically ~independent
observables sensitive to the same underlying physics

Theory: models and effective theories for different stages of fireball

evolution
« initial state: modified pdfs, saturation models,...
» hard probes: pQCD-based modeling
» collective expansion: viscous relativistic hydrodynamics
» hadronic phase: detailed Monte Carlos

Experiment+Theory:

» detailed comparison and mutual calibration
« evolution with Vs: RHIC vs LHC 1
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STAR and PHENIX at RHIC

STAR

Coils Magnet

EM
Calorimeter
Time Projection

amber

Electronics
Platforms

Forward Time Projection Chamber

21 coverage, -1 <n <1 Partial coverage 2 x 0.5x, -0.35 <h <0.35
for tracking + (coarse) EMCal Finely segmented calorimeter
+ forward muon arm

PID by TOF, dE/dx (STAR), RICH (PHENIX)

Optimised for acceptance Optimised for high-pt <%, v, e, J/y
(correlations, jet-finding) (EMCal, high trigger rates)
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ALICE is the comprehensive heavy ion experiment at the LHC
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(57

Design optimized for B
*huge particle multiplicities of nuclear collisions
eefficient tracking over wide momentum range
sextensive particle identification
* low mass around vertex =» low p; measurements

QGP “temperature” ~ Agcp ~ few hundred MeV
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Detector Performance
ALICE Particle ID (TPC dE/dx)
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Kinematics for Inclusive Reactions

Rapidity y =

Rapidity is differentially
boost-invariant

Pseudo-rapidity

== p” P
dN/dy Distribution invariant with
S longitudinal boost
51y ~ P =
E
y

y —>n=-In [tan(@/z)] for m/p <<1

Invariant production
Cross section

d’c do

d®p  27p,dydp;

6/14/12
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Nuclear geometry and hard processes:
Glauber theory

Glauber scaling for hard processes with large momentum transfer
» short coherence length = successive NN collisions independent
 p+Ais incoherent superposition of N+N collisions

— @ — — :/3’._:.\5\: Normalized nuclear density r(b,z):
"/ [ dzdbp(b,z) =1

Nuclear thickness function TA(b) = j dz ,o(b, Z)

Inelastic cross section for ~ _iner e CEE inel A)
p+A collisions: IpA _/db (1 1= Ta(b) o]

Ogjrd A. O_hard/db TA (b) Ao_hard
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Experimental tests of Glauber scaling:
hard cross sections in p(u)+A collisions

Glauber scaling expectation:

hard hard
oo = Aoy

for 7 GeV muons on nuclei

Ginel
M.May et al, Phys Rev Lett 35, 407 (1975)
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Hard cross sections in p+A scale as Al

A
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Glauber Theory for A+B Collisions

Nuclear overlap function:

Tug (5) = / ds Ty (3) Tx (g_ 5) B

A
Average number of binary NN collisions for
B nucleon at coordinate sg: s° m A

N4 (5— gB) — ATy (5_ gB)  ginel B& //{;)

participants

Average number of binary NN collisions for A+B
collision with impact parameter b:

NAB()) = B / dig Ty (55) -NIA (5 —gB)

— AB y TAB (b) -Oinel

nn
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Measuring collision geometry |

Nuclei are “macroscopic”
=>»characterize collisions by impact parameter

Correlate particle yields from
~causally disconnected parts of =g
phase space ==y &

=» correlation arises from < T P o
common dependence on = ; ‘
collision impact parameter

[

DDDDDD
AAAAA
.....

ABSORBER_
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Forward neutrons

6/14/12

ZDCvs VO

Measuring collision geometry ||

4000}

3000

2000

* Order events by centrality metric
« Classify into percentile bins of
“centrality”

HI jargon: “0-5% central”

_|_

40-50%

Data

Glauber fit

A

® | &

Connect to Glauber theory via
particle production model:
* N, effective number of
binary nucleon collisions (~5-

8
b

10% precision)

* Npo,: NUmber of (inelastically
scattered) “participating”
nucleons

P I I I
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II III
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Charged hadrons n~3
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Scaling of cross sections using Glauber theory
plays a central role in quantitative analysis of
experimental measurements and connection to
theory.

Let’s test it experimentally in A+A collisions...
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Glauber test at LHC:

Scaling of direct photon, Z, W yields in Pb+Pb vs p+p

CMS \[5,=276TeV L (PbPb)=68pbt L, [pp)= 231 nb?
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Summary of Lecture 1:
what are the questions? (partial list)

What is the nature of QCD Matter at finite temperature?
« What is its phase structure?
« What is its equation of state?
* What are its effective degrees of freedom?

* Is it a (trivial) gas of non-interacting quarks and gluons, or a fluid of
interacting quasi-particles?

* What are its symmetries?
* Is it correctly described by Lattice QCD or does it require new
approaches, and why?
What are the dynamics of QCD matter at finite temperature?
* What is the order of the (de-)confinement transition?
« How is chiral symmetry restored at high T, and how?
* Is there a QCD critical point?
» What are its transport properties?
Can QCD matter be related to other physical systems?

Can we study hot QCD matter experimentally?
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Glauber test at RHIC:
Scaling of direct photon yield in p+p vs. Au+Au

Direct y: N;,-scaled
inclusive yield

PHENIX

@ ptp—oy+X
@ Au+Au 0-10%— v + X

R,A(P; > 6.0 GeV/c)
[5)]

_ dNAu+Au/de
Nbin ’ de—l-p/de

Raa

N
-

"
—h
1 1 1 1
N

® 200 GeV Au+Au Direct Photon
O 200 GeV Au+Aumn®

PHENIX, PRL 94, 232301
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Direct y yield scales with N,
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Glauber test at RHIC:
Scaling of charm total production cross section

2 : STAR Au+Au Central
—— 1.8F~ PRL94 (2005) STAR Preliminary
=< - New Cu+Cu Result
S 16 STAR Preliminary
ol 2 1.4 STAR d+Au | +
Q ,S —NLO Upper Bound (Mew) | 'l' \
@) Z 1.2 :—
1
- STAR Au+Au MinBias
0.8 STAR Preliminary
0.6 ;— ¢ PHENIX p+p +F'HEI*»II'.'@'{ Au+Au
0.4 Lo Presiction > NLO prediction:
- rEeen e m = 1.3 GeV, reasonably
0.2~ NLO Lower Bound (New) ) hardscale at p=0
n II 11 | 1 1 1 | I | I 1 1 1111 II
0
1 10 10? 10°

Number of Binary Collisions

Total charm cross section scales with N,;, In A+A

(Sizable disagreement between STAR and PHENIX ...... ?)
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