

Constructive experiments of the section of the Constru-From the Octoor to the Constru-Van Section and an other any is he led bet the an

Dare to Desire? Dates to be access a so reaction desired on www.favor.respector.com

Augusto Ceccucci/CERN FLAVOUR PHYSICS LECTURE 1

Primorsko, Bulgaria, June 14, 2012

Contents of Lecture 1

- Why Flavour Physics and CP-Violation are important
- CP-Violation in the "Standard Model", quark mixing and decay
- CKM matrix
- Experimental State of the Art
 - K, D & B mesons
- Ourrent trends & Outlook

Baryon Asymmetry of the Universe (BAU)

n_{quark}-n_{antiquark}/n_{quark} (Proto Universe) ~n_{baryon}/n_{photon} (Today)~5×10⁻¹⁰

Sakharov Conditions for BAU

Scanned at the American Institute of Physics

Andrei Sakharov (1967)

To allow the development of an asymmetry between matter and anti-matter

- **1. Violation of Baryonic Number**
- 2. Thermodynamic Non-equilibrium

3. Violation of C & CP

Origin of BAU: Baryogenesis or Leptogenesis?

CP-Violation

Da Gino Isidori: http://scienzapertutti.lnf.infn.it/P1/schedaCP.html

CP-Violation and Flavour Physics in the Era of the LHC

- Many open questions are associated with flavour and CP-Violation:
- Why are there three generations (if they are three)?
- What determines the hierarchy of the quark masses?
- What determines the pattern of the quark mixing?
- What determines the non-zero neutrino mass and mixing?
- Flavour Problem:
 - Many reasons to expect New Physics (NP) at $\Lambda \sim 1$ TeV
 - Naïve Flavour bounds $\Lambda > 10^{4}$ TeV
 - \rightarrow the full theory must have a non-trivial flavour structure

Types of CP-Violation

$$\frac{|M_{L}\rangle \propto p|M^{0}\rangle + q|\overline{M}^{0}\rangle}{|M_{H}\rangle \propto p|M^{0}\rangle - q|\overline{M}^{0}\rangle} \Delta F = 2 \qquad \Delta F$$

1. CP Violation in mixing $|q/p| \neq 1$ (indirect)

- 2. CP Violation in decays $|\overline{A}_{\bar{f}} / A_f| \neq 1$ (direct)
- 3. CP Violation in the interference

$$M^{0} \qquad f \qquad \text{Im } \lambda_{f} \neq 0$$
$$\lambda_{f} \equiv \frac{q}{p} \frac{\overline{A}_{f}}{A_{f}}$$
$$\overline{M}^{0}$$

Quark masses and mixing

The masses and mixings of quarks have a common origin in the standard model (SM): they arise from the Yukawa interactions with the Higgs condensate

$$\mathcal{L}_Y = -Y_{ij}^d \,\overline{Q_{Li}^I} \,\phi \, d_{Rj}^I - Y_{ij}^u \,\overline{Q_{Li}^I} \,\epsilon \,\phi^* u_{Rj}^I + \text{h.c.}$$

- The diagonalization yields the physical states. As a result the charged currents couples to the physical quarks as: (d_L)

$$\frac{-g}{\sqrt{2}} \left(\overline{u_L}, \, \overline{c_L}, \, \overline{t_L} \right) \gamma^{\mu} W^+_{\mu} V_{\text{CKM}} \begin{pmatrix} d_L \\ s_L \\ b_L \end{pmatrix} + \text{h.c.},$$

V_{CKM} is a 3 x 3 complex matrix know as the Cabibbo, Kobayashi, Maskawa matrix

Cabibbo-Kobayashi-Maskawa (CKM) Quark Mixing

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

With 3 generations CP violation is naturally introduced by an irreducible complex phase in the quark mixing matrix (Komayashi & Maskawa, 1973)

$$\begin{split} |V_{ud}| &= 0.97425 \pm 0.00022 \\ |V_{us}| &= 0.2252 \pm 0.0009 \\ |V_{cd}| &= 0.230 \pm 0.011 \\ |V_{cs}| &= 1.006 \pm 0.023 \\ |V_{cb}| &= (40.9 \pm 1.1) \times 10^{-3} \\ |V_{ub}| &= (4.15 \pm 0.49) \times 10^{-3} \\ |V_{tb}| &= 0.89 \pm 0.07 \end{split}$$

 $0^+ \rightarrow 0^+$ super-allowed nuclear β decays Kaon semi-leptonic and leptonic decays $2\mu/1\mu$ ratio in neutrino/antineutrino interactions Average of semi-leptonic D and leptonic D_s decays Combination of exclusive and inclusive B decays Comb. of exclusive and inclusive charmless B decays^{*} Single top-quark production cross-section

 $V_{td} \& V_{ts}$ accessible from FCNC processes (loops)

*But tension inclusive and exclusive determinations (see later)

Hierarchical Structure

$$V_{CKM} = \begin{pmatrix} 1 - \lambda^2 / 2 & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \lambda^2 / 2 & A\lambda^2 \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

Wolfenstein parameterization

From Global fit (PDG review, 2010):

Imposing SM constraint (<u>3 generation unitarity</u>):

 $\lambda = 0.2253 \pm 0.0007$ A = 0.808 $+0.022_{-0.015}$

 $\rho = 0.132 + 0.022_{-0.014}$ $\eta = 0.341 \pm 0.013$

V_{us} and universality

$$\frac{g}{\sqrt{2}}W_{\alpha}^{+}\left(\overline{\mathbf{U}}_{L}\mathbf{V}_{\mathrm{CKM}}\gamma^{\alpha}\mathbf{D}_{L}+\overline{e}_{L}\gamma^{\alpha}\nu_{e\,L}+\overline{\mu}_{L}\gamma^{\alpha}\nu_{\mu\,L}+\overline{\tau}_{L}\gamma^{\alpha}\nu_{\tau\,L}\right) + \mathrm{h.c.}$$

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$

Standard-model coupling of quarks and leptons to W

Universality: Is G_F from μ decay equal to G_F from π , K, nuclear β decay?

$$G_{\mu}^{2} = (g_{\mu}g_{e})^{2}/M_{W}^{4} \stackrel{?}{=} G_{CKM}^{2} = (g_{q}g_{\ell})^{2} (|V_{ud}|^{2} + |V_{us}|^{2})/M_{W}^{4}$$

Physics beyond the Standard Model can break gauge universality:

V_{us} from semileptonic decays

$$\Gamma(K_{\ell 3(\gamma)}) = \frac{C_K^2 G_F^2 m_K^5}{192\pi^3} S_{\text{EW}} |V_{us}|^2 |f_+^{K^0 \pi^-}(0)|^2 \\ \times I_{K\ell}(\lambda_{K\ell}) \left(1 + 2\Delta_K^{SU(2)} + 2\Delta_{K\ell}^{\text{EM}}\right) \\ \text{with } K \in \{K^+, K^0\}; \ \ell \in \{e, \mu\}, \text{ and:} \\ C_{\kappa^2} \quad 1/2 \text{ for } K^+, 1 \text{ for } K^0$$

 $S_{\rm EW}$ Universal SD EW correction (1.0232)

Inputs from experiment:

 $\Gamma(K_{\mathcal{O}(\mathbf{y})})$

- Rates with well-determined treatment of radiative decays:
 - Branching ratios
 - Kaon lifetimes

 $I_{K\ell}(\{\lambda\}_{K\ell})$

- Integral of form factor over phase space: As parameterize evolution in t
 - K_{e3} : Only λ_{\pm} (or $\lambda_{\pm}', \lambda_{\pm}''$)
 - $K_{\mu3}$: Need $\lambda_{\rm F}$ and $\lambda_{\rm 0}$

Inputs from theory:

- $f_{+}^{R^{0}\pi^{+}}(0)$
- Hadronic matrix element (form factor) at zero momentum transfer (t = 0)
- $\Delta_{K}^{SU(2)}$

 $\Delta_{\mathcal{K}\mathcal{L}}^{\mathbf{EM}}$

- Form-factor correction for SU(2) breaking
- Form-factor correction for long-distance EM effects

Evolution of Experimal Input...

...and of the theoretical one $f_+(0)$

The Cabibbo angle can be precisely determined (~0.4%)!

CP-Violation in Kaons

• Neutral Kaon Mixing ($\pi\pi$, semi-leptonic)

$$|\varepsilon| = \frac{G_F^2 f_K^2 m_K m_W^2}{12\sqrt{2}\pi^2 \Delta m_K} \hat{B}_K \{\eta_1 S(x_c) \operatorname{Im}(V_{cs} V_{cd}^*)^2 + \eta_2 S(x_t) \operatorname{Im}(V_{ts} V_{td}^*)^2 + 2\eta_3 S(x_c, x_t) \operatorname{Im}(V_{cs} V_{cd}^* V_{ts} V_{td}^*)\}$$

 $|\varepsilon| = (2.233 \pm 0.015) \times 10^{-3}$

• Neutral Kaon Decays into $\pi\pi$ PDG Average

$$\operatorname{Re}\frac{\varepsilon'}{\varepsilon} \propto \operatorname{Im}(V_{td}V_{ts}^*)$$

$$\operatorname{Re}\frac{\varepsilon'}{\varepsilon} = (1.67 \pm 0.23) \times 10^{-3}$$

 $\Gamma(K^0 \to \pi^+ \pi^-) \neq \Gamma(\overline{K}^0 \to \pi^+ \pi^-)$

Decisive Experiments: NA48 & KTeV

One (of the six) Unitarity Relations

$$V_{td}V_{tb}^* + V_{cd}V_{cb}^* + V_{ud}V_{ub}^* = 0$$

$$\beta = \phi_1 = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right)$$
$$\alpha = \phi_2 = \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right)$$
$$\gamma = \phi_3 = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$

Constraints (examples)

Process	CKM and other factors	Constraint
$b \rightarrow u / b \rightarrow c$	$ V_{u b} ^2 / V_{c b} ^2$	$\rho^2 + \eta^2$
$\Delta \mathrm{m}_{\mathrm{Bd}}$	$ V_{td} ^2 (f_{Bd}B_{Bd})^2$	(1- ρ) ² +η ²
$\Delta~{ m m}_{ m Bd}~$ / $\Delta~{ m m}_{ m Bs}$	$ V_{td} / V_{ts} ^2 (f_{Bd}B_{Bd} / f_{Bs}B_{Bs})^2$	(1- ρ) ² +η ²
ε _K	(see before)	η(1-ρ)
$B(K^0{}_L \to \pi^0 ~\nu ~\nu)$	$ \text{Im}(V_{td} V_{ts}^*) ^2$	η^2

B mesons: Time dependent CP-Asymmetry

$$A_{CP} = \frac{\Gamma(\overline{M}^{0} \to f) - \Gamma(M^{0} \to f)}{\Gamma(\overline{M}^{0} \to f) + \Gamma(M^{0} \to f)} = \sin(2\Psi)\sin(\Delta mt)$$

 $f = \overline{f}$

For

Most recent determination of $sin(2\phi_1)=sin(2\beta)$: Belle

Belle's update on full dataset (preliminary):

Courtesy by Markus Roehrken, Beauty 2011

Time-Dependent CP-Asymmetry in $b \rightarrow c c s$

$sin(2\beta) \equiv sin(2\phi_1) \stackrel{\text{HFAG}}{\underset{\text{PRELIMINARY}}{\text{HFAG}}}$			
BaBar PRD 79 (2009) 072009	0.687 ± 0.028 ± 0.012		
BaBar χ_{c0} K _S	$0.690 \pm 0.520 \pm 0.040 \pm 0.070$		
PRD 80 (2009) 112001			
BaBar J/ψ (hadronic) K _S PRD 69 (2004) 052001	1.560 ± 0.420 ± 0.210		
Belle Moriond EW 2011 preliminary [⊮]	0.668 ± 0.023 ± 0.013		
Average HFAG	0.678 ± 0.020		
0.2 0.3 0.4 0.5 0.6	0.7 0.8 0.9 1 1.		

Sin2β^{eff} from "Penguins"

Determinations of sin2β from modes other than charmonium can be affected by New Physics Contributions via Penguin (loop) diagrams

Naïve average (use with extreme caution!) consistent to the $b \rightarrow cc s$ determination

 $\Delta = 0.04 \pm 0.04$

Constraints on the rho eta plane

The unique measure of CP-Violation in the SM is the area of the Unitarity Triangle (Jarlskog invariant J)

 $J = (2.96^{+0.20}_{-0.16}) \times 10^{-5}$

PDG 2012

Masiero's glass: New Physics generically entails new Sources of CP-violation

- The stringent limits from FCNC are a threat to New Physics Searches
- Departure from the SM predictions → Possible hints of New Physics

Half Empty Glass...

....Half Full !

Are there any "hints" of deviation from the CKM description of quark mixing?

Time dependent CP-Asymmetries in B_{s}

$$V_{td}V_{td}^{*} \sim e^{i2\beta}$$

Large CP asymmetry in SM ($\beta = \phi_1$)

$$V_{ts} V_{ts}^* \sim real$$

$$B_{s}^{0} \xrightarrow{b} W \xrightarrow{s} \phi$$

$$f \xrightarrow{t} f \xrightarrow{t} f \xrightarrow{s} c \xrightarrow{J/\psi}$$

$$W \xrightarrow{b} c$$

Very small CP asymmetry expected in SM

Important new input: LHCb@LHC

1 fb⁻¹

Peter Clark @ Moriond EW 2012

CP-Asymmetry in $B_s \rightarrow J/\psi \phi$

 $\phi_s = -0.002 \pm 0.083$ (stat.) ± 0.027 (syst.) rad

Presented by Peter Clark @ Moriond EW 2012

CP–Violating muon charge asymmetry (II)

Mark Williams FPCP 2011

CP Violation in charm?

- CP violation contributions:
 - Direct contribution \rightarrow in decay
 - Indirect contributions \rightarrow in mixing and in interference
- In the SM CP violation is conserved to first approximation (dominance of 2generations)
- New Physics can enhance CP violating observables
- Cabibbo-favoured modes not interesting
 - Tree-level SM contribution swamps everything else
- Singly-Cabibbo-suppressed modes with gluonic penguin diagrams very promising
- Interference between Tree and Penguin can generate direct CP asymmetries
 - Several classes of NP can contribute
 - but also non-negligible SM contribution

Measurement of ΔA_{CP} (D⁰ \rightarrow K⁻K⁺ - D⁰ \rightarrow $\pi^{-}\pi^{+}$)

arXiv:1112:09838

LHCb & CDF:

Time integrated asymmetry:

$$A_{CP}(f) = \frac{\Gamma(D^{0} \to f) - \Gamma(\overline{D}^{0} \to f)}{\Gamma(D^{0} \to f) + \Gamma(\overline{D}^{0} \to f)}$$

f is the finale state K⁺K⁻ or $\pi^+\pi^-$

Both direct and indirect CPV contributions

The D⁰ flavour is determined by the charge sign of the slow pion from the D* decay

CPV in charm

$$A_{RAW}(f)^{*} = \frac{N(D^{*+} \rightarrow D^{0}(f)\pi_{s}^{*}) - N(D^{*-} \rightarrow \overline{D}^{0}(\overline{f})\pi_{s}^{-})}{N(D^{*+} \rightarrow D^{0}(f)\pi_{s}^{*}) + N(D^{*-} \rightarrow \overline{D}^{0}(\overline{f})\pi_{s}^{-})}$$

$$A_{RAW}(f)^{*} = A_{CP}(f) + A_{D}(f) + A_{D}(\pi_{s}) + A_{P}(D^{*+})$$
Physics CP asymmetry
Detection asymmetry of D⁰ and of slow pion

$$A_{RAW}(K^{-}K^{+})^{*} - A_{RAW}(\pi^{-}\pi^{+})^{*} = A_{CP}(K^{-}K^{+}) - A_{CP}(\pi^{-}\pi^{+}) = \Delta A_{CP}(\pi^{+}\pi^{+}) = \Delta A_{CP}(\pi^{-}\pi^{+}) = \Delta A_{CP}(\pi^{-}\pi^{+$$

HCP 2011: LHCb, 620 pb⁻¹ : first evidence (3.5 σ) of CPV in charm:

$$\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = (-0.82 \pm 0.21 \pm 0.11)\%$$

LHCb, PRL 108 (2012) 11602

Moriond 2012: CDF, 9.6 fb⁻¹, confirms this result

$$\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = (-0.62 \pm 0.21 \pm 0.10)\%$$

CDF, PRD 85 (2012) 012009

CPV in charm: state of the art

CPV in charm: SM or NP?

Generically parametrically suppressed in SM

- in mixing it enters as $O(V_{cb}V_{ub}/V_{cs}V_{us}) \sim 10^{-3}$
- direct CPV in SCS as $\mathcal{O}([V_{cb}V_{ub}/V_{cs}V_{us}]\alpha_s/\pi) \sim 10^{-4}$
- Incould be enhanced by SM penguins and corrections
 - e.g. Brod, Grossman, Kagan, Zupan (arXiv:1203.6659)
- more channels to be studied (charm three body decays...)

V_{ub} "tension"

- Charmless b decays → first evidence of mixing between first and third generation (Argus & CLEO, 1990)
- As we saw, V_{ub} is an important constraint to the CKM fits
- In addition, it's value is needed to fix the SM expectation for $B(B^+ \rightarrow \tau^+ \nu)$ which, beyond SM, is sensitive to contributions coming from charged Higgs exchanges
- Big effort to bring theoretical errors under control
- Big experimental effort to reduce background (Full reconstruction methods etc.)
- There is a persisting tension between the exclusive and inclusive determinations

V_{ub} "tension"

As summarized by Guido Altarelli at FPCP 2011

 V_{ub} incl = 4.35±0.18±0.23 V_{ub} excl = 3.25±0.12±0.28

Bernlocher

 V_{ub} incl- V_{ub} excl = 1.10 ±0.42

2.6 σ

I think that this "tension" is due to the fact that over the last 30 years hundreds of theory papers have been devoted to the determination of Vub: each author claiming that his work led to a decrease of the theor. error

In the SM it measures the combination $f_b|V_{ub}|$

$$B(B \to \ell \nu) = \frac{G_F m_B}{8\pi} m_\ell^2 (1 - \frac{m_\ell^2}{m_B^2})^2 f_B^2 |V_{ub}|^2 \tau_B$$

Using $V_{u\,b}$ as external input, the decay can be used to determine the B meson decay constant f_B and compare it to the lattice QCD value

(e.g. $f_B = 190 \pm 13 MeV$ (HPQCD collaboration arXiv:0902.1815v2)

Helicity suppressed in the SM, sensitive to Charged Higgs mass in SM extensions
B Factories: $B^+ \rightarrow \tau^+ \nu$

No kinematic constraints, many neutrinos!

Belle Semi Leptonic tags PRD 82 071101 R (2010)

Babar Hadronic tags (arXiv:1008.0104 (2010)

HFAG Average: B(B⁺ $\rightarrow \tau^+ \nu$) = (1.64 ± 0.34) ×10⁻⁴

$B^+ \rightarrow \tau^+ \nu$ and CKM fits

As shown by G. De Nardo at FPCP 2011

V_{ub} & RH currents?

Crivellin (2009); see also: Buras, Gemmler (2011)

Similarly: $R_{K} = K_{e2}/K_{\mu 2}$

SM

$$\mathbf{x} = \frac{\Gamma(\mathbf{K}^{\pm} \to \mathbf{e}^{\pm} \nu)}{\Gamma(\mathbf{K}^{\pm} \to \mu^{\pm} \nu)} = \frac{\mathbf{m}_{\mathbf{e}}^{2}}{\mathbf{m}_{\mu}^{2}} \cdot \left(\frac{\mathbf{m}_{\mathbf{K}}^{2} - \mathbf{m}_{\mathbf{e}}^{2}}{\mathbf{m}_{\mathbf{K}}^{2} - \mathbf{m}_{\mu}^{2}}\right)^{2} \cdot \left(1 + \delta \mathbf{R}_{\mathbf{K}}^{\mathrm{rad.corr.}}\right)$$

 $R_{\kappa}^{SM} = (2.477 \pm 0.001) \times 10^{-5}$

Cirigliano & Rosell PRL 99 (2007) 231801

e.g. Masiero, Paradisi Petronzio PRD 74 (2006) 011701, JHEP 0811 (2008) 042

$$\mathbf{R}_{K}^{\text{LFV}} \approx \mathbf{R}_{K}^{\text{SM}} \left[1 + \left(\frac{\mathbf{m}_{K}^{4}}{\mathbf{M}_{H^{\pm}}^{4}} \right) \left(\frac{\mathbf{m}_{\tau}^{2}}{\mathbf{M}_{e}^{2}} \right) | \mathbf{\Delta}_{13} |^{2} \text{tan}^{6} \beta \right]$$

Example: (Δ_{13} =5×10⁻⁴, tanβ=40, M_H=500 GeV/c²) R_K^{MSSM} = R_KSM(1+0.013).

NA62: R_K full data set

$\begin{aligned} \mathsf{R}_{\mathsf{K}} &= (2.488 \pm 0.007_{\mathsf{stat}} \pm 0.007_{\mathsf{syst}}) \times 10^{-5} \\ \mathsf{R}_{\mathsf{K}} &= (2.487 \pm 0.010) \times 10^{-5} \end{aligned}$

Published (40% sample) CERN-PH-EP-2011-004, arXiv:1101.4805, PLB B698 (2011) 105

Errors in momentum bins are partially correlated

Angela Romano, La Thuile 2012

R_K world average

A. Buras list of Flavour Superstars

Strategies for Indirect NP Searches

- Improve meaurement precision of CKM elements
 - Compare measurements of the same quantities which may or may not be sensitive to new physics
 - Extract all CKM angles and sides in many different ways \rightarrow inconsistencies would signal NP
- Measure Flavour Changing Neutral Currents (FCNC) processes where the SM contributions are suppressed

-e.g. OPE expansion for b \rightarrow s transitions:

$$H_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i} \left[\underbrace{C_i(\mu)O_i(\mu)}_{ieft-handed part} + \underbrace{C_i'(\mu)O_i'(\mu)}_{right-handed part} \right]$$

left-handed part

suppressed in SM

—New Physics may

- modify C_i^(!) short-distance Wilson coefficients
- add new long-distance operators O_i^(')

Tree i = 1.2 = 3 - 6,8Gluon penguin Photon penguin i = 7i = 9,10Electroweak penguin Higgs (scalar) penguin $\mathbf{i} = \mathbf{S}$ Pseudoscalar penguin i = P

 $B \rightarrow K^* \mu^+ \mu^-$

FCNC Forbidden at tree level NP can modify the helicity structure (angular resolution)

Partial BF and angular observables have been measured by Babar, Belle, CDF and LHCb: all show good agreement with SM predictions (within the uncertainties)

As presented by G. Lanfranchi (Blois 2012) Detailed presentation M. Patel CERN seminar, May 8, 2012 $B_{d,s}^{0} \rightarrow \mu^{+}\mu^{-}$

 Exploratory decay sensitive to non-standard Higgs(es)

 Clean signature at hadronic colliders

Interrule at 05% CL for PD/Pt	Limit @95%CL	L [fb ⁻¹]
D0 (PLB 693 2010 539)	D0: < 51x10 ⁻⁹	6.1
CDF (H. Miyake, La Thuile 2012)	CDF: [0.8,34]x10 ⁻⁹	10
ATLAS (arXiv:1204.0735)	ATLAS :< 22 x 10 ⁻⁹	2.4
CMS (arXiv:1203.3976)	CMS: < 7.7 x 10 ⁻⁹	4.9
LHCb (arXiv:1203.4493)	LHCb: <4.5 x 10 ⁻⁹	1
0 1 2 3 4 5 (BR($B_{a} \rightarrow \mu^{+}\mu^{-})$ (10 ⁸)		

LHCb & CMS: B_{d,s}⁰

Mode	Limit	at 90% CL	at 95% CL
$B_s^0 \to \mu^+ \mu^-$	Exp. bkg+SM Exp. bkg Observed	$\begin{array}{c} 6.3\times 10^{-9} \\ 2.8\times 10^{-9} \\ 3.8\times 10^{-9} \end{array}$	$\begin{array}{c} 7.2 \times 10^{-9} \\ 3.4 \times 10^{-9} \\ 4.5 \times 10^{-9} \end{array}$
$B^0 \to \mu^+ \mu^-$	Exp. bkg Observed	$\begin{array}{c} 0.91 \times 10^{-9} \\ 0.81 \times 10^{-9} \end{array}$	$\begin{array}{c} 1.1 \times 10^{-9} \\ 1.0 \times 10^{-9} \end{array}$

LHCb

 $B^+ \rightarrow J/\psi K^+$ invariant-mass

 $\mathcal{B}(\mathrm{B}^0_\mathrm{s} o \mu^+\mu^-) < 7.7 \times 10^{-9} \; (6.4 \times 10^{-9})$ ${\cal B}({
m B}^0 o \mu^+\mu^-) < 1.8 imes 10^{-9} \; (1.4 imes 10^{-9})$ 95% (90%) CL.

CMS

Ultra-rare K Decays

Decay	Branching Ratio (×10 ¹⁰)		
	Theory(SM)	Experiment	
$K^+ \to \pi^+ \nu \overline{\nu}(\gamma)$	$0.85 \pm 0.07^{[1]}$	$1.73^{+1.15^{[2]}}_{-1.05}$	
$K_L^0 \to \pi^0 \nu \overline{\nu}$	$0.26 \pm 0.04^{[3]}$	< 260 (90% CL) ^[4]	

J.Brod, M.Gorbahn, PRD78, arXiv:0805.4119
 AGS-E787/E949 PRL101, arXiv:0808.2459
 M. Gorbahn
 KEK-E391a arXiv:0911.4789v1

- New experiments under construction:
 - KOTO JPARC: $K_{L}^{0} \rightarrow \pi^{0} \nu \nu$
 - NA62 CERN: $K^+ \rightarrow \pi^+ \nu \nu$

Kaon Rare Decays and NP

C. The Z penguin (and its associated W box)

(courtesy by Christopher Smith)

$K^+ \rightarrow \pi^+ \nu \nu \text{ in SM}$

NA62 Sensitivity

Decay Mode	Events
Signal: K ⁺ $\rightarrow \pi^+ \nu \nu$ [flux = 4.8×10 ¹² decay/year]	55 evt/year
K ⁺ $\to \pi^{+}\pi^{0} [\eta_{\pi^{0}} = 2 \times 10^{-8} (3.5 \times 10^{-8})]$	4.3% (7.5%)
K⁺→μ⁺ν	2.2%
$K^+ \rightarrow e^+ \pi^+ \pi^- \nu$	≤3%
Other 3 – track decays	≤1.5%
$K^+ \rightarrow \pi^+ \pi^0 \gamma$	~2%
$K^+ \rightarrow \mu^+ \nu \gamma$	~0.7 %
$K^+ \rightarrow e^+(\mu^+) \pi^0 \nu$, others	negligible
Expected background	≤13.5% (≤17%)

Future Projects

- e⁺e⁻ Super-Flavour Factories
 - Italian SuperB
 - Japanese KEK/Belle II
- LHCb Upgrade
- Fermilab Project X

Summary of Lecture 1

- There has been significant progress during the past decade in flavour physics
- So far all manifestations of CP violation are consistent with "just" one complex phase in the CKM quark mixing matrix
- We are moving towards very quantitative SM tests
- Flavour is at the heart of particle physics. There is a strong programme to continue the search for CP-Violation and FCNC beyond the SM. A fully complementary approach to the searches for new phenomena performed at the energy frontier
- The next lecture will focus on some of the detector techniques required to advance the frontier of very rare processes

Sensitivity projections with 75 ab^{-1} at $\Upsilon(4S)$

Uncertainties shrink: $x_D \rightarrow x_D/4$; $y_D \rightarrow y_D/10$ Precision in X_D is limited by Dalitz plot

KEKB/Belle status: official statement

"As is now well known, Japan suffered a terrible earthquake and tsunami on March 11, which has caused tremendous damage, especially in the Tohoku area. Fortunately, all KEK personnel and users are safe and accounted for.

The injection linac did suffer significant but manageable damage, and repairs are underway. The damage to the KEKB main rings appears to be less serious, though non-negligible. No serious damage has been reported so far at Belle. Further investigation is necessary.

We would like to convey our deep appreciation to everyone for your generous expressions of concern and encouragement."

As reported by Peter Krizan at the SuperB workshop, May 2011

Other Kaon measurements

 $K^+ \rightarrow \pi^0 \mu^+ \nu$ (Transverse Polarization -T violation)

 $K^+ \rightarrow e^+ \nu / K^+ \rightarrow \mu^+ \nu$ (Universality, LFV, Pseudoscalars...)

- $K^+ \rightarrow \mu^+ \nu_H$ (Heavy neutrinos)
- $K_L^0 \to \pi^0 ee / \pi^0 \mu \mu$ (CP Violation)
- $K_L^0, K^+ \to LFV e.g. \quad K_L^0 \to \mu e$
- K^0 Interferometry (Plank scale physics)
- $K \rightarrow \pi l \nu \dots$ (Universality, Chiral PT)

Enormous data sets + multipurpose detectors = lots of physics

NA62 Gigatracker: Test Beam Results

- Albeit only 6% of the incoming particles are kaons, all of them (~ 1 GHz) have to be tracked
- Material budget $\sim 0.5\% X_0$ per station
- Time resolution < 200 ps / station</p>
- Silicon micro-pixels with ultra-fast ASIC front end with DLL TDC
- Prototypes beam tested at CERN PS

SuperB Motivation

measures the sides and angles of the Unitarity Triangle (UT)

- Many measurements constrain the sides and angles of the UT: the SM predicts that all measurements "intersect" at apex of the triangle
- When NP is present, the measurements do not yield a unique apex, but you need the high precision of a Super Flavour Factory.

Note: not all milestones are shown on this planning

SuperKEKB/Belle II

Neutral Meson Mixing

CP violation in decay is defined by $|A_f|/A_f| = 1$.

In charged meson decays, where mixing effects are absent, this is the only possible source of *CP* asymmetries:

```
A
f \pm \equiv \Gamma(M - \rightarrow f -) - \Gamma(M + \rightarrow f +)
\Gamma(M - \rightarrow f -) + \Gamma(M + \rightarrow f +)
=
|Af - /Af + |2 - 1
|Af - /Af + |2 + 1
```

Measurement of Φ_1/β

<u> MFV + 1 new phase + Bs CPV = EDM</u>

EDMs

Large B_s CPV shrinks available

parameter space -23 EDM (e x cm) 10 10 10 10 10 exp. bound **10**⁻²⁵ 10 -27 10 -28 10 -29 10 Thallium **10**⁻³⁰ neutron 10 **Mercury** -31 10 **B**_s CPV -32 10 -0.75 -0.5 -0.25 0.25 0.5 0.75 -1 0 Buras, Isidori, Paradisi arXiv:1007.529 $\vartheta_{\psi \varphi}$

66/24

NA62 Beam & Detectors

NA62 Technique: Decay in Flight

$$m_{miss}^2 = (\tilde{p}_K - \tilde{p}_\pi)^2$$

Kinematically Constraint Decays

Unconstraint Decays

B physics @Y (4S)

Variety of measurements for any observable

Observable	B Factories (2 ab^{-1})	Super B (75 ab^{-1})	Observable	B Factories (2 ab^{-1})	SuperB (75 at
$\sin(2eta)~(J/\psi~K^0)$	0.018	0.005 (†)			· (1)
$\cos(2\beta) \ (J/\psi \ K^{*0})$	0.30	0.05	$B(B \to \tau \nu)$	20%	4% (†)
$\sin(2eta) \; (Dh^0)$	0.10	0.02	$\mathcal{B}(B \to \mu \nu)$	visible	5%
$\cos(2eta)~(Dh^0)$	0.20	0.04 🔜	$\mathcal{B}(B \to D\tau\nu)$	10%	2%
$S(J/\psi \ \pi^0)$	0.10	0.02			
$S(D^+D^-)$	0.20	0.03	$\mathcal{B}(B \to \rho\gamma)$	15%	3% (†)
$\alpha \ (B \to \pi \pi)$	$\sim 16^{\circ}$	3°	$\mathcal{B}(B \to \omega \gamma)$	30%	5%
$\alpha \ (B \to \rho \rho)$	$\sim 7^{\circ}$	$1-2^{\circ}$ (*)	$A_{CP}(B \to K^*\gamma)$	0.007 (†)	0.004 († *)
$\alpha \ (B \to \rho \pi)$	$\sim 12^{\circ}$	2°	$A_{\rm em}(B \rightarrow m)$		0.05
$lpha \ (ext{combined})$	$\sim 6^{\circ}$	1-2° (*)	$A_{CP}(D \to p))$	0.010 (1)	0.00
$\gamma (B \to DK, D \to CP \text{ eigenstates})$	s) $\sim 15^{\circ}$	2.5°	$\blacktriangleright A_{CP}(b \to s\gamma)$	0.012(1)	0.004 (†)
$\gamma (B \to DK, D \to \text{suppressed sta})$	tes) $\sim 12^{\circ}$	2.0°	$ A_{CP}(b \to (s+d)\gamma) $	0.03	0.006 (†)
$\gamma (B \to DK, D \to \text{multibody stat})$	$\sim 9^{\circ}$	1.5°	$S(K_s^0\pi^0\gamma)$	0.15	0.02 (*)
$\gamma (B \rightarrow DK, \text{ combined})$	$\sim 6^{\circ}$	1-2°	$S(ho^0\gamma)$	possible	0.10
$2\beta + \gamma (D^{(*)\pm}\pi^{\mp}, D^{\pm}K_{S}^{0}\pi^{\mp})$	200	52	_		
			$A_{CP}(B \to K^*\ell\ell)$	7%	1%
$S(\phi K^0)$	0.13	0.02 (*)	$A^{FB}(B \to K^*\ell\ell)s_0$	25%	9%
$ S(\eta' K^0) $	0.05	0.01 (*)	$A^{FB}(B \to X_{ell})s_0$	35%	5%
$- S(K_s^0 K_s^0 K_s^0)$	0.15	0.02(*)	$\mathcal{B}(R \to K_{\nu}\overline{\nu})$	vigible	20%
$\sim S(K_s^0 \pi^0)$	0.15	0.02(*)	$\mathcal{D}(D \rightarrow K \nu \nu)$	VISIDIE	2070
$S(\omega K_s^0)$	0.17	0.03(*)	$B(B \to \pi \nu \nu)$	-	possible
$S(f_0K_s^0)$	0.12	$0.02\;(*)$		Possible also at LHC	D
			Sin	milar precision at LH	Cb
Vek (exclusive)	4% (*)	1.0% (+)	Example of «St	uper B specifics»	
Vch (inclusive)	1% (*)	0.5% (=)	inclusive in a	addition to exclusi	ve analyses
V _{n.n} (exclusive)	8% (*)	3.0% (*)	channelswit	$h \pi 0 v' s v manvl$	
[V _{n.k}] (inclusive)	8先(*)	2.0% (*)		π. γ. σ. ν. παιτγ ι	

	physics (p	olarized bear	ns) 👝
	Process	Sensitivi	ty
	$\mathcal{B}(au o \mu \gamma$) 2×10^{-9}	
	${\cal B}(au o e\gamma)$	$) 2 \times 10^{-9}$	
	$\mathcal{B}(au o \mu \mu)$	$(\mu) = 2 \times 10^{-10}$	
	$\mathcal{B}(au ightarrow eee$	2×10^{-10}	D
	$\mathcal{B}(au o \mu \eta)$	$) 4 imes 10^{-10}$	D
	$\mathcal{B}(au o e\eta)$	$6 imes 10^{-10}$	D
	$\mathcal{B}(au ightarrow \ell K$	$\binom{0}{s} = 2 \times 10^{-10}$	D
	B _s a	t Y(5S)	
Obse:	rvable	Error with 1 ab^{-1}	Error with 30 ab^{-1}
$\Delta\Gamma$		$0.16 \ {\rm ps}^{-1}$	$0.03 \ {\rm ps}^{-1}$
Γ		$0.07 \ {\rm ps}^{-1}$	$0.01 \ {\rm ps}^{-1}$
β_s from	om angular analysis	20°	8°
$A^s_{ m SL}$		0.006	0.004
A _{CH}		0.004	0.004
$\mathcal{B}(B_s)$	$ ightarrow \mu^+\mu^-)$	-	$< 8 \times 10^{-9}$
$ V_{td} $		0.08	0.017
$\mathcal{B}(B_s)$	$\rightarrow \gamma \gamma)$	38%	7%
	the the the	Lh ^v	h
β_s from β_s	$\sum_{w=0}^{\infty} \frac{V^0 \bar{V}^0}{V^0}$	0.49	110

Bs : Definitively better at LHCb

Charm at Y(4S) and threshold

Mode	Observable	B Factories (2 ab ⁻¹)	$SuperB$ (75 ab^{-1})
$D^0 \rightarrow K^+ K^-$	y_{CP}	23×10^{-3}	5×10^{-4}
$D^0 \rightarrow K^+ \pi^-$	y'_D	$2-3 \times 10^{-3}$	7×10^{-4}
	$x_D^{\prime 2}$	$1-2 \times 10^{-4}$	3×10^{-5}
$D^0 \rightarrow K^0_s \pi^+ \pi^-$	y_D	23×10^{3}	$5 imes 10^{-4}$
	x_D	23×10^{3}	$5 imes 10^{-4}$
Average	y_D	$1-2 \times 10^{-3}$	3×10^{-4}
	x_D	23×10^{-3}	$5 imes 10^{-4}$
$D^0 \rightarrow K^+ \pi^-$	$x^{\prime 2}$		3×10^{-5}
	y'		7×10^{-4}
$D^0 \rightarrow K^+ K^-$	y_{CP} ,	To he evaluated	5×10^{-4}
$D^0 \rightarrow K_S^0 \pi^+ \pi^-$	x	at I UCh	4.9×10^{-4}
	y	at LIICO	3.5×10^{-4}
	q/p		3×10^{-2}
	φ		2°

Channel	Sensitivity
$D^0 \rightarrow e^+e^-, D^0 \rightarrow \mu^+\mu^-$	1×10^{-8}
$D^0 \rightarrow \pi^0 e^+ e^-, D^0 \rightarrow \pi^0 \mu^+ \mu^-$	$2 imes 10^{-8}$
$D^0 \rightarrow \eta e^+ e^-, D^0 \rightarrow \eta \mu^+ \mu^-$	$3 imes 10^{-8}$
$D^0 ightarrow K^0_{\mathcal{S}} e^+ e^-, D^0 ightarrow K^0_{\mathcal{S}} \mu^+ \mu^-$	$3 imes 10^{-8}$
$D^+ \rightarrow \pi^+ e^+ e^-, \ D^+ \rightarrow \pi^+ \mu^+ \mu^-$	1×10^{-8}
$D^0 \to e^{\pm} \mu^{\mp}$	1×10^{-8}
$D^+ \to \pi^+ e^\pm \mu^\mp$	1×10^{-8}
$D^0 o \pi^0 e^{\pm} \mu^{\mp}$	2×10^{-8}
$D^0 o \eta e^{\pm} \mu^{\mp}$	$3 imes 10^{-8}$
$D^0 ightarrow K^0_{ m S} e^\pm \mu^\mp$	$3 imes 10^{-8}$
$D^+ \rightarrow \pi^- e^+ e^+, \ D^+ \rightarrow K^- e^+ e^+$	1×10^{-8}
$D^+ \rightarrow \pi^- \mu^+ \mu^+, D^+ \rightarrow K^- \mu^+ \mu^+$	1×10^{-8}
$D^+ \rightarrow \pi^- e^{\pm} \mu^{\mp}, \ D^+ \rightarrow K^- e^{\pm} \mu^{\mp}$	1×10^{-8}

Belle II in comparison with Belle

20 40 60

Time (ns)

1st 2nd 3rd generation at BNL = 7 event data sample

Can get hundreds of evts per year starting with beam from Main Injector and continuing with Project X

-10

0 10 20

Time (ns)
KOTO Experiment $K_{L}^{0} \rightarrow \pi^{0} \nu \nu$

Courtesy of Tadashi Nomura (FPCP 2011)

LHCb Upgrade (Letter of Intent)

- CERN/LHCC 2011-001, March 2011
- LHCb expects to accumulate 5 fb⁻¹ in the years up to 2017
- Then plans to upgrade to collet 5 fb⁻¹ per year
- Not limited by LHC luminosity
- Main Motivations:
 - Precise measurement of the B_s oscillation phase
 - Analysis of $B \rightarrow V V$ decays
 - ~1 deg determination of gamma angle

 - Exploit the NP sensitivity of the full kinematic distribution in $B_d \to K^{0*} \ \mu^+ \ \mu^-$

Belle II Collaboration

15 countries, ~60 institutions

~400 collaborators

Courtesy of Peter Križan

Fermilab Intensity Frontier: Project X

SuperB Detector (with options)

Future Super B Factories

	SuperB	Super KEKB
Peak Luminosity	>10 ³⁶	0.8 x 10 ³⁶
Integrated Luminosity	75 ab ⁻¹	50 ab ⁻¹
Site	Green Field	KEKB Laboratory
Collisions	mid 2016	2015
Polarization	80% electron beam	No
Low energy running	10 ³⁵ @ charm threshold	No
Approval status	Approved	Approved
	Courtesy of Marcello Giorg	gi

B_{u,d} physics: Rare Decays

JPARC Flavour Programme

• $K_{L}^{0} \rightarrow \pi^{0} \nu \nu$ (KOTO)

$$B(K_L \to \pi^0 \nu \nu) = \kappa_L \left(\frac{\text{Im}(V_{ts}^* V_{td})}{\lambda^5} X_t \right)^2$$
$$= (2.43^{+0.40}_{-0.37} \pm 0.06) \times 10^{-11}$$

• T-Violation Search in K⁺ $\rightarrow \pi^0 \mu^+ \nu$ μ transverse polarization (TREK): aim to $\delta(P_T)(\text{stat}) \sim 10^{-4}, \, \delta(P_T)(\text{syst}) \sim 10^{-4}$

KOTO Sensitivity and timeline

Note: As is considered before the earthquake. Will be updated.

NA62 EXPERIMENT: $K^+ \rightarrow \pi^+ \nu \nu$ K⁺ DECAYS IN FLIGHT

CERN SPS primary p: 400 GeV/c Unsepared beam:

- 75 GeV/c
- 750 MHz
- π/K/p (~6% K+)

NA48 Liquid Krypton Calorimeter as photon veto

Most photon vetoes and trackers operated inside the vacuum decay tank
17 m long RICH for π/μ separation
High resolution Hermetic detector
~100 ps time resolution to correlate the beam K⁺ to the decay π⁺