

Hot QCD Matter

Peter Jacobs

Lawrence Berkeley National Laboratory/CERN

Lecture 1: Tools Lecture 2: Initial conditions: partonic structure and global observables Lecture 3: Collective flow and hydrodynamics Lecture 4: Jets and other hard probes

Nuclear geometry and hard processes: Glauber theory

Glauber scaling for hard processes with large momentum transfer

- short coherence length \Rightarrow successive NN collisions independent
- p+A is incoherent superposition of N+N collisions

Experimental tests of Glauber scaling: hard cross sections in $p(\mu)+A$ collisions

Measuring collision geometry I

Nuclei are "macroscopic"

characterize collisions by impact parameter

Measuring collision geometry II

- Order events by centrality metric
- Classify into percentile bins of "centrality"

HI jargon: "0-5% central"

Connect to Glauber theory via particle production model:

- N_{bin} : effective number of binary nucleon collisions (~5- 10% precision)
- N_{part} : number of (inelastically scattered) "participating" nucleons

Scaling of cross sections using Glauber theory plays a central role in quantitative analysis of experimental measurements and connection to theory.

Let's test it experimentally in A+A collisions...

Glauber scaling tests at LHC: Scaling of direct photon, Z, W yields in Pb+Pb vs $p+p$

Very simple question: can we understand the total number of particles generated in a heavy ion collision (a.k.a. "multiplicity")?

Let's start with the "initial state": what is the role of the partonic structure of the projectiles?

Multiple interactions drive the collision dynamics \rightarrow we need to understand the initial (incoming) state…

 $6/14/12$ Hot QCD Matter

Perturbative QCD factorization in hadronic collisions

Q² evolution of Parton Distribution and Fragmentation Functions

$$
E\frac{d^3\sigma}{dp^3} \propto f_{a/A}\left(x_a Q^2\right) \otimes f_{b/B}\left(x_b, Q^2\right) \otimes \frac{d\hat{\sigma}^{ab \to cd}}{dt} \otimes D_{h/c}\left(z_c Q^2\right)
$$

Parton Distribution Fucntions (PDFs) and fragmentation functions are not calculable *ab initio* in pQCD

They are essentially non-perturbative in origin (soft, long distance physics) and must be extracted from data at some scale Q_0^2

pQCD then specifies how PDFs and fragmentation functions evolve from Q_0^2 to any other scale Q^2 (DGLAP evolution equations)

Q^2 evolution

Precision measurements of proton structure: Deep Inelastic Scattering (DIS) of e+p

proton in "∞" momentum frame

No transverse momentum

 $0 \le x \le 1$

 $x =$ fractional longitudinal momentum carried by the struck parton

 \sqrt{s} = ep cms energy $Q^2 = -q^2 = 4$ -momentum transfer squared (or virtuality of the "photon")

Probing the structure of the proton with DIS

Define a new quantity F_2 :

parton density for flavor *i*

If a proton were made up of 3 quarks, each carrying 1/3 of proton's momentum:

•Bjorken scaling: F_2 has no Q^2 dependence •If partons are point-like and incoherent then Q^2 shouldn't matter

Measurement of proton F_2

Tour de force for perturbative QCD:

Q² does matter!

- Partons are not point-like and incoherent.
- Hadronic structure depends on the scale at which you probe it!

Spectacular agreement with DGLAP evolution

Parton Distribution Function in the proton

Low Q^2 : valence structure

 Q^2 evolution (gluons)

^{6/14/12} $X \sim 1/3$ Let $\frac{1}{\text{Gluon density decreases towards lower Q}^2}$

Gluon saturation at low *x*

Fix Q^2 and consider what happens as x is decreased...

Problem: low x gluon density cannot increase without limit (unitarity bound) Solution:

•gluons carry color charge

•if packed at high enough density they will recombine

- \rightarrow gluon density is self-limiting
- \sim \sim 14/2 \sim 14/2 \sim 16/2 \sim 1 gluon saturation !

Gluon recombination in nuclei

Uncertainty principle: wave fn. for very low momentum (low x) gluons extends over entire depth of nucleus

Define gluon density per unit area in nucleus of mass A:

$$
\rho \sim \frac{xG_A(x, Q^2)}{\pi R_A^2}; \ G_A(x, Q^2) \sim A \cdot G_N(x, Q^2)
$$

Gluon recombination cross section:

 $\sigma_{gg\rightarrow g}\sim \frac{\alpha_S}{Q^2}$

Recombination occurs if:

$$
\rho\cdot \sigma_{gg\to g}>1
$$

Saturation momentum scale Q_{sat}^2 satisfies self-consistent condition:

Nuclear enhancement of Q_{sat}

 $R \sim A^{1/3}$

6/14/12 **Gluon recombination for** $Q^2 < Q_{sat}^2$ $\overline{}$ $\overline{}$ 17

Saturation scale vs nuclear mass

Hot QCD Matter - Lecture 2

J. Albacete, Hard Probes 2012

Forward di-hadron angular correlations in RHIC dAu data

But maybe not:

Conventional pQCD mechanisms plus conventional nuclear effects work as well…

Uncertainties in current CGC phenomenological works:

- Need for a better description of n-point functions: [D. Triantafyllopoulos's and T. Lappi's talk]
- Better determination of the pedestal: K-factors in single inclusive production? Role of double parton scattering?

Next step: p+A at LHC (November 2012 run)

C. Salgado, Hard Probes 2012

Summary thus far

QCD is remarkably successful in describing the partonic stucture of the proton over a vast kinematic range

There are good reasons to expect signficant modification of this structure in heavy $nuclei \rightarrow$ saturation

- Some experimental evidence in favor of saturation in forward d+Au correlations at RHIC
- LHC p+A run this November will provide a wealth of new data to address the issue in more detail (crucially: much smaller *x*)

Does any of this play a role in high energy nuclear collisions? Let's go back to our original question: what generates all the particles?

Multiplicity measurements

Count the number of charged particles per unit pseudo-rapidity

Simplest "bulk" observable that characterizes the collision

Charged particle multiplicity

$dN_{ch}/d\eta$: model comparisons

PRL, 105, 252301 (2010), arXiv:1011.3916

 V_{NN} =2.76 TeV Pb+Pb, 0-5% central, $|\eta|$ <0.5

dNch/dη: Centrality dependence

PRL, 106, 032301 (2011), arXiv:1012.1657

 $\frac{1}{6}/14/12$ Striking centrality-independent scaling RHIC \rightarrow LHC \qquad \qquad

Does saturation play a role?

$dN_{ch}/d\eta$ vs. centrality: models PRL, 106, 032301 (2011), arXiv:1012.1657

Summary of Lecture 2

Initial state: approaching quantitative control

Final charged multiplicity closely related to initial gluon multiplicity:

$$
\frac{dN^{ch}}{d\eta} \sim \frac{2}{3} \cdot \mathbf{K} \cdot \frac{dN^g}{d\eta}
$$

Good evidence that gluon saturation in nuclei plays a role

Smooth evolution of multiplicity with collision energy and system size

Why is any of this surprising? How could it be different?

Thermalized system: massive reinteractions, generation of large numbers of particles and softening of momentum spectra

> expect stronger dependence on energy and system size…?

Apparently not the case

Next lecture: additional news about equilibration.

Backup

Simpler case: deep inelastic scattering (DIS) of e+p

NC: $e^{t} + p \rightarrow e^{t} + X$, *CC*: $e^{t} + p \rightarrow \overline{V}_{e}(V_{e}) + X$

Glauber Theory for A+B Collisions

Nuclear overlap function:

$$
T_{AB}\left(\vec{b}\right)=\int d\vec{s} \;T_{A}\left(\vec{s}\right)T_{B}\left(\vec{s}-\vec{b}\right)
$$

Average number of binary NN collisions for B nucleon at coordinate s_B :

$$
N_{bin}^{nA}\left(\vec{b} - \vec{s}_B\right) = A \cdot T_A \left(\vec{b} - \vec{s}_B\right) \cdot \sigma_{nn}^{inel}
$$

Average number of binary NN collisions for A+B collision with impact parameter b:

$$
N_{bin}^{AB} (b) = B \int d\vec{s}_B T_B (\vec{s}_B) \cdot N_{bin}^{nA} (\vec{b} - \vec{s}_B)
$$

= AB · T_{AB} (b) · σ_{nn}^{inel}

