

1

Hot QCD Matter

Peter Jacobs

Lawrence Berkeley National Laboratory/CERN

Lecture 1: Tools Lecture 2: Initial conditions: partonic structure and global observables Lecture 3: Collective flow and hydrodynamics Lecture 4: Jets and other hard probes

QCD: running of $\alpha_{\rm S}$

Perturbative QCD factorization in hadronic collisions

Hot QCD Matter - Lecture 4

Jets in heavy ion collisions

Controlled "beams Final-state interact using controlle

→ tomographi

r are calculable

luon Plasma

Jet quenching

Radiative energy loss in QCD (multiple soft scattering):

Plasma transport coefficient:

$$\hat{q} = \frac{\langle \text{(momentum transfer)}^2 \rangle}{\text{mean free path}} = \frac{\mu^2}{\lambda}$$

Total medium-induced energy loss:

$$\Delta E_{med} \sim \alpha_s \hat{q} L^2$$

Jets in real heavy ion collisions

Leading hadron as a jet surrogate

Hot QCD Matter - Lecture 4

Jet quenching: RHIC vs LHC

RHIC/LHC charged hadrons

•RHIC/LHC: Qualitatively similar, quantitatively different
•Where comparable, LHC quenching is larger
→higher color charge density

LHC jet quenching: comparison to pQCD-based models

• Main variation amongst models:

implementations of radiative and elastic energy loss

• Models calibrated at RHIC, scaled to LHC via multiplicity growth

Key prediction: p_T-dependence of R_{AA} ($\Delta E \sim \log(E)$) - OK

•Qualitatively: pQCD-based energy loss picture consistent with measurements •We can now refine the details towards a quantitative description

Calculation of quenching parameter qhat: pQCD vs AdS/CFT

Weakly coupled medium: perturbative QCD (Baier et al.):

$$\hat{q}_{pQCD} = \frac{8\varsigma(3)}{\pi} \alpha_s^2 N_{color}^2 T^3 \sim 0.94 \frac{GeV^2}{fm} \text{ at } T = 300 \text{ MeV}$$
Proportional to N_C² ~ entropy density
Strong coupling: N=4 SYM AdS/CFT (Liu, Rajagopal and Wiedemann):
$$\hat{q}_{AdS/CFT} = \frac{\pi^{\frac{3}{2}} \Gamma(\frac{3}{4})}{\Gamma(\frac{5}{4})} \sqrt{\alpha_{SYM} N_{color}} T^3 + 4.5 \frac{GeV^2}{fm} \text{ at } T = 300 \text{ MeV}$$
NOT proportional to N_C² ~ entropy density
NOT proportional to N_C² ~ entropy density
NOT proportional to N_C² ~ entropy density

Full jet reconstruction

Jet quenching is a **partonic** process: can we study it at the partonic level?

Jet reconstruction: capture the entire spray of hadrons to reconstruct the kinematics of the parent quark or gluon

Jet measurements in practice: experiment and theory

colinear safety:

finite seed threshold misses jet on left?

Fermilab Run II jet physics hep-ex/0005012

infrared safety: one or two jets?

Algorithmic requirements:

- same jets at parton/particle/detector levels
- independence of algorithmic details (ordering of seeds etc)

Modern jet reconstruction algorithms

- Cone algorithms
 - Mid Point Cone (merging + splitting)
 - SISCone (seedless, infr-red safe)
- Sequential recombination algorithms
 - k_T
 - anti-k_T
 - Cambridge/ Aachen
- Algorithms differ in recombination metric:
 - → different ordering of recombination
 - → different event background sensitivities

Modern implementation: FastJet (M. Cacciari, G. Salam, G. Soyez JHEP 0804:005 (2008))

Jet production at collider energies

Good agreement with NLO pQCD

Jets in LHC Heavy Ion Collisions

Dijet Asymmetry

Jet 0, pt: 205.1 GeV

- Dijet selection:
 - | η^{Jet}| < 2
 - Leading jet p_{T,1} > 120GeV/c
 - Subleading jet p_{T,2}> 50GeV/c
 - $\Delta \phi_{1,2} > 2\pi/3$

$$A_{j} = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}$$

Removes uncertainties in overall jet energy scale

Jet 1, pt: 70.0 GeV

LHC Pb+Pb: Dijet energy imbalance

Large energy asymmetry in central collisions (seen by both CMS and ATLAS)

Hot QCD Matter - Lecture 4

Is this jet quenching?

Jet measurements over large background

Background fluctuations distort measured inclusive cross section

Warning: this is a large effect even for high energy jets at the LHC But not corrected by ATLAS or CMS

• Instead, each makes ad hoc cuts to suppress magnitude of fluctuations and uses MC to estimate residual effects

Jet quenching = unknown modification of fragmentation; correct procedure?

Test: PYTHIA+Fluctuations (no quenching)

[Extras]

6/14/1

Salam, Cacciari and Soyez '11

Results from Hydjet embedding (ATLAS cuts)

24

CMS: γ-Jet Correlations

- Correlate Isolated Photons with Jets
 - Photons do not interact with the medium
 - Tag initial parton energy and direction
 - $-\gamma$ -Jet channel selects predominantly quark jets

CMS: γ-Jet Momentum Balance

Peripheral collisions: no quenching expected

- MC (blue) and Data (red) distributions should match
- but they don't: issues with MC, residual fluctuations, biased jet reconstruction,...?

CMS speaker's comments:

- Significant deviation of $\langle x_{J\gamma} \rangle$ in PbPb compared to PYTHIA + HYDJET
- The centrality dependence is mostly visible in $R_{J\gamma}$ Yue Shi Lai, Parallel VB, Thursday 16:30 The p_T shifting below the 30 GeV threshold_{ecture 4}

ALICE jet measurements

ALICE jet measurement strategy

Measure almost all jet constituents explicitly

- Efficient charged particle tracking over wide p_T range
- Highly granular EM calorimetry

pp collisions: well controlled systematics

• Jet Energy Scale uncertainty ~4% at $p_T=100 \text{ GeV/c}$

Hot OCD Matter - Lect

 \rightarrow ~20% cross section uncertainty

pp at $\sqrt{s} = 2.76$ TeV: inclusive jet cross section

Talk: R. Ma

Agreement within uncertainties with NLO pQCD, PYTHIA8

pp at $\sqrt{s} = 2.76$ TeV: ratio of jet cross-sections R=0.2/R=0.4

Probe of jet structure

Soyez '12: direct calculation of ratio is effectively NNLO Reasonable agreement with NLO+hadronization

ALICE Jets in heavy ions: coming soon, with very different systematics... 31

Recall the summary of Lecture 1: scorecard

What is the nature of QCD Matter at finite temperature?

- What is its phase structure?
- What is its equation of state?
- What are its effective degrees of freedom?

• Is it a (trivial) gas of non-interacting quarks and gluons, or a fluid of interacting quasi-particles?

- What are its symmetries?
- Is it correctly described by Lattice QCD or does it require new approaches, and why?

What are the dynamics of QCD matter at finite temperature?

- What is the order of the (de-)confinement transition?
- How is chiral symmetry restored at high T, and how?
- Is there a QCD critical point?
- What are its transport properties?

Can QCD matter be related to other physical systems?

Can we study hot QCD matter experimentally?

Red=progress Blue=interesting ideas Black=still thinking

Backup

Di-hadron correlations as a jet surrogate

Jet quenching II: di-hadrons

- Recoiling jet is strongly altered by medium
- Clear evidence for presence of very high density matter

Di-hadron correlations at high-pt

QCD analysis of jet quenching

Model calculation: ASW quenching weights, detailed geometry Simultaneous fit to data.

~Self-consistent fit of independent observables
Data have good precision: limitation is accuracy of the theory

Inclusive jet cross sections at $\sqrt{s}=200 \text{ GeV}$

M. Ploskon QM09

Inclusive cross-section ratio: p+p R=0.2/R=0.4

compare within same dataset: systematically better controlled than R_{AA}

Narrowing of the jet structure with increasing jet energy

Inclusive cross-section ratio in p+p: compare to NLO pQCD

40

Jet hadronization

Hadronization effects: HERWIG vs. PYTHIA

Different hadronization models generate closely similar ratios

$\sigma(R=0.2)/\sigma(R=0.4)$: NNLO calculation

G. Soyez, private communication

Broadening due to combined effects of higher order corrections and hadronization

Incl. cross-section ratio: Au+Au R=0.2/R=0.4

Marked suppression of ratio relative to p+p → medium-induced jet broadening

Incl. cross-section ratio Au+Au: compare to NLO

Stronger broadening in measurement than NLO ...work in progress for both experiment and theory...