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Overview

- Convex optimization with neural data
- Time series reconstruction using multiblock RNN autoencoders
(ECOG-MRAE)



Convex Optimization



Adaptive Feature Selection

- Can we adapt to a BCl's user learning strategy in trying out different features?

- Brain engages in sparsification of learning
- Could we free up features for other tasks?

- Goal: develop an online adaptive feature selection scheme for neural
interface learning
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Feature Selection Complications

Non-neural data:

e Assumes data is stationary
e Lots of data
e Trained once

Neural data:

e In general, not stationary
e Less data; requires smoothness
e Decoders need to be calibrated and refitted



Si Jia’s innovations

- Incorporate multiobjective perspective
- Add smoothness objective
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My goal: apply Si Jia's convex feature selection algorithm to data from a monkey




General Project Outline

- Train a kalman filter on recorded data

- Run convex optimization algorithm

- Remove “less useful” features

- Evaluate new kalman filter performance
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Aside: Kalman Filter

- State-based prediction method: models data based on observed points and
assumed hidden states

State-transition: Observation-model:
xt;4xt—1 + V‘;t ye = Hxe +q¢
State transformation State covariance Observation  Observation
(linear) (i.e. ‘uncertainty’) transformation covariance (i.e.
(linear) ‘uncertainty’)

l |

w,™ N(O, W) q.~ N(0,@)




Convex Optimization

Input: neural data recorded from electrodes
H (observation transformation), gl] (observation covariance)

Output: binary value ranking the importance of each feature



To understand which features the algorithm is selecting, we can compare spatial
distributions
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and we can compare intra- and inter-band distributions
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Filter Evaluation

- Comparing predicted and actual cursor positions (separated by axis) with
- Correlation
- Root-mean-squared error

- How does filter performance change when we remove different numbers of

features?
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Correlation vs number of features removed
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In both metrics, we see a plateau of performance until around 600-700 features removed



Future Directions

- Implement the random filter
Remove a random selection of features and compare performance

- Evaluate performance when changing sparsity and smoothness parameters
- Implement closed-loop system



ECOG-MRAE



Time Series Reconstruction

Aim: reconstruct non-linear time series data recorded from BCI

LFADS “model neural recordings as an observed projection from a latent

dynamical system”
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Current Work & Future Directions

- Working to replicate results and figures from the paper
- Later, evaluate model with other tests & other data



Extracurriculars




