The CMS BRM System

Richard Hall-Wilton (TS/LEA) On behalf of the

CMS Beam Conditions and Radiation Monitoring Group

Institutes Involved: Auckland, Canterbury, CERN, DESY, Karlsruhe, Princeton, Rutgers, Tennessee, UCLA

BRM Group Remit

Provide monitoring of the beam-induced radiation field within the UXC55 cavern and the adjacent straight sections.

Provide real-time fast diagnosis of beam conditions and initiate protection procedures in the advent of dangerous conditions for the CMS detector

System features must include:

- Active whenever there is beam in LHC
- Ability to initiate beam aborts
- Provision of warning & abort signals to CMS subdetectors
- Postmortem reporting
- Provision of online and offline beam diagnostic information to CMS and LHC
- Bench-marking of integrated dose and activation level calculations
- Integration of all online beam diagnostic information (including subdetectors).
 - □ Updating at ≥1 Hz

BRM Subsystems: The Prioritized List

BRM Subsystem Summary

Subsystem	Location	Sampling time	Function	Readout + Interface	
Passives	In CMS and UXC	Long term	Monitoring		uo
RADMON	Around	1s	Monitoring	CMS +	soluti
	CMS			Standard LHC	e res
BCM2	At rear of	40 us	Protection	CMS +	d tim
	HF			Standard LHC	ased
BCM1L	Pixel	Sub orbit	Protection	CMS +	ncre
	Volume	~ 5us		almost std LHC	
BSC	Front of HF	Bunch by	Monitoring	CMS	
		bunch		Standalone	
BCM1F	Pixel	Bunch by	Monitoring +	CMS	
	volume	bunch	protection	Standalone	

All online systems read on when machine operational and possibility of beam in LHC Systems are independent of CMS DAQ

BCM Functionality

- Use synthetic diamond sensors as simple Flux/rate monitors
 - □ 2003-2006: Prototypes tested in CDF, CERN East Hall, KAZ (Karlsruhe), PSI
- Generate warnings/alarms/beam aborts based on sustained abovethreshold readings or very rapid rate of increase towards threshold
 - Deadtime free monitoring
 - □ CMS configurable thresholds
 - Rolling history of conditions available online,
 - □ Initiate CMS beam abort if conditions above abort threshold

□ CMS:

- Direct warning/alarm, monitoring, diagnostic and postmortem information
- User selectable time scales over which above-threshold conditions assessed

□ LHC:

- Provide full monitoring + beam dump post-mortem reporting to CCC
- Close interaction with LHC operations and LHC machine protection group

Example: CMS BCM Sensors in CDF- Online Monitoring Plots

Beam Conditions Monitor in detail:

- Three locations
 - \square BCM1: Inside the CMS detector, z=1.8m from the IP, r=4.8cm
 - 8 Diamonds per end (4 poly- and 4 single- crystal diamonds)
 - \square **BCM2:** Outside the central detector (z = 14.365 m)
 - Two locations (12 diamonds per end)
 - □ Shielded from IP (r= 29cm)
 - □ As close as possible to Beampipe (r=5cm)
- All locations:
 - □ monitor diamond leakage current synthetic polycrystalline diamond sensor
 - Warning/alarm abort thresholds to be CMS configurable
- Readout:
 - □ BCM2:
 - Standard LHC BLM readout (Tunnel card to DAB board to database)
 - Exactly the same readout and reporting structure
 - □ BCM1_L:
 - LHC BLM readout from DAB card onwards.
 - Sub orbit monitoring (~10us) synchronized to orbit Clock
 - No tunnel card
 - Custom mezzanine card on DAB board. Uses BLM interface and reporting structure
- BCM1_L, BCM2 have marginal sensitivity for pilot run
- Post-mortem and monitoring data
 - Reporting mechanism unchanged from BLM system ie CMW/FESA

BCM1 Unit

BCM: Monitoring Timescales

BCM2: monitors leakage current on half-orbit scale

- LHC-standard readout hardware from LHC Beam Loss Monitor (BLM) group
 - □ Replaced ionization chamber with polycrystalline diamond (10x10x0.4mm)
 - □ Sampling time: 40 us
 - Monitoring time scales: 12 staggered buffers to cover 40us to 100s history

BCM1L: monitors leakage current on sub-orbit scale

- □ Synchronizes with orbit marker
- □ User configurable sub-orbit sampling scheme: (2us minimum)
 - Statistical measurement of conditions at user specified positions in orbit
 - Sub-orbit monitoring averaged and passed to std BCM2 staggered buffer readout
 - Dedicated sampling of beam abort gap

Beam Conditions Monitor - Status

- Diamonds ordered majority already received
 - □ BCM2 diamonds metallised. Ready for packages
 - □ Rest of diamonds ready soon
- Packaging prototype design done -
 - □ Final packaging soon.
- Support structures design done manufacture will start soon
- BCM1_F prototype FE electronics complete
- Cables for BCM2 already laid
- Cabling for BCM1 being prepared
- On track for being installed on time

Full BCM Readout Chains

- Baseline systems on track
 - □ BCM2 readout chain
 - Full chain validated [sensor to backend readout]: Karlsruhe Aug 06
 - BCM1L readout chain
 - Custom Mezzanine card tested: Based on Tevatron design
 - Prototype of chain from sensor to VME backplane expected April 07
- Procurement of final hardware ongoing no showstoppers expected

Will complete full slice test by end next Month

=> BCM1, BCM2 readout chain + interface to CMSCR and CCC

CMS Beam Scintillator Counters

- ✓ Simple standalone system: No front end electronics
- ✓ Simple to commission
- Monitoring Independent of CMS DAQ status

Readout:

- □ PMTs mounted on side of HF, readout over long cables (80m) to USC.
- □ ADC & discriminator + TDC readout
 - Same back end as BCM1F

CMS Beam Scintillator Counters

- Output to CMS (+CCC?): statistical measurements
 - Rate monitoring on sub orbit scales + bunch by bunch, inc. Abort gap monitoring
 - Relative time measurements: incoming vs outgoing particles

•Should be sensitive during 450 GeV run

Status:

- Recovered scintillator / PMTs tested
- PMTs Tested for fringe magnetic field expected
- Final design of mounting underway
- Will be mounted in the summer
- Cables installed
- Readout design ongoing

Cross-sectional Areas HF = $5.6m^2$ TK = $3.8m^2$ BSC paddles = $0.6m^2$ BSC = $1.1m^2$

Ratios

BSC_Paddles/TK =17%; BSC/HF =20%

CMS: display similar to ZEUS example

BCM2 + BSC2

RADMON and Passive Monitors

RADMON Units (In conjunction with TS-LEA)

- Measures
 - Dose, dose rate using RadFETs
 - Hadron (E>20 MeV) flux and fluence, SEU rate via SRAM
 - 1 MeV equiv neutron fluence via pin diodes (α >100keV fluence)
- □ 18 Monitors deployed around CMS (UXC +USC)
 - Data reported back to the RADMON database

Installation of RADMON infrastructure started

- Used for Online benchmark points for verification of simulations
- Passive Dosimeters (In conjunction with TS-LEA, DESY)
 - □ CERN standard dosimeters
 - Pin diodes, TLDs, RPLs, Alannine
 - □ Provide detailed radiation mapping after Pilot run

Summary

- Priorities for startup BRM subsystems defined.
- Mechanical Infrastructure well advanced
- Readout chains progressing/well advanced
 - Exception: BSC/BCM1F back end only starting (off-the-shelf solution is forseen)
- Services and Installation schedule
 - □ Mapped to CMS master schedule.
 - □ Fine detail of installation sequence still needs to be choreographed
- Interface work commencing
 - Done in close contact with the accelerator groups
 - Mechanism is defined through the LEADE protocols.
- Full BCM slice test expected March 07
 - □ RADMON system test already done by TS-LEA