TZR Time Projection Chambers for the T2K experiment

Alain Delbart, CEA/IRFU - Univ. Paris-Saclay

Vertical TPC (2004-) for ND280

High-Angel TPC (2004-) for ND280 upgrade

ND280 @ JPARC (Japan)

Celebrating Ioannis Giomataris CEA/Saclay, 5-6 october 2023

ME, IOANNIS AND MICROMEGAS

CF4 in Gas for KABES

T2K/v-TPC IN TPC HISTORY

	Table 3. Continued.						
Parameter/Experiment cont.	NA35	EOS/HISS	NA49 VTX	NA49 MAIN	CERES/NA45	HARP	T2K ^a
Operation	1990	1992	1995	1995	1999	2001	2009/10
Inner/Outer radius or L/W (m)	2.4/1.25 (L/W)	1.5/0.96 (L/W)	2.5/1.5 (L/W); 2×	4/4 (L/W); 2×	0.6/1.3; L = 2	0.1/0.41	2.2/0.7 (H/L); 3×
Max. driftlength $(L/2)$ (m)	1.12 vert.	0.75 (H)	0.67 vert.	1.1 vert.	0.7 rad.	1.6	0.9 W
Magnetic field (T)	0	1.3	1.5	0	$B_z < 0.7; B_r < 0.3$	0.7	0.2
Gas :	Ar/CH ₄	Ar/CH ₄	Ne/CO ₂	Ar/CH ₄ /CO ₂	Ne/CO ₂	Ar/CH ₄	Ar/CF4/i-C4H10
Mixture	91/9	90/10	90/10	90/ 5/5	80/ 20	91/9	95/3/2
Pressure (atm)	1	1	1	1	1	1	1
Drift field ($kV cm^{-1} atm^{-1}$)	0.12	0.12	0.19	0.175	0.2-0.6	0.111	0.2
Electron drift velocity (cm μ s ⁻¹)	5	5.5	1.3	2.3	0.7-2.4	5.2	7
$\omega\tau$ (see section 2.2.1.3)	0	0.5	1	0		3.3	0.7
Pads: size $(w \times L, mm \times mm)$	5.5×40	8×12	$3.5 \times (16, 28)$	$(3.6, 5.5) \times 40$	10 chevron	6.5 × 15	6.9×9.7
Max. no. 3D points	60 + 30	128	<150	90		20	72×3
dE/dx: Max. no. samples/track	60	128	<150	90		20	72×3
Sample size (mm atm); w or p	40; pads	12	16, 28	40		15	9.7
Gas amplification		3000	20 000	5000	8000	20 000	~ 1000
Gap a-p; a-c; c-gate ^b		4; 4; 6	3,2;	2,3; 3;6	3;3;6	5;5;6	0.128
Pitch a-a; cathode; gate	4; 1; 2	4; 1; 2	4; 1; 1	4; 1;1	6; 2; 2	4; 2; 2 stagg.	
Pulse sampling (MHz/no. samples)	12.5 /	10/256, SCA	/512	/ 512		10/>300, FADC	/512 SCA
Gating ^c		o. on tr.	o. on tr.	o. on tr.	o. on tr.	o.on tr.	none
Pads, total number	11 000	15000	74 000	108 000	78 000	4000	125 000
Performance							
$\Delta x_{\rm T}$ (μ m)-best/typ.	300-800	300	150	150	230/340	600-2400	600 (1m drift)
$\Delta x_{\rm L}$ (µm)-best/typ.	250-450				dr = 400/640	3.5	
Two-track separation (mm)	18	25		10			
$\partial p/p^2$ (GeV/c) $^{-1}$: TPC alone; high p		1			1	0.2/0.45-0.50	spec: <10;
dE/dx (%) : single tracks/in jets	/6	/4	<4 : VTX + Main			16	spec: <10/
Comments	B = 0 only pad r.o.	only pad r.o.	Kr ^m calibration only pad r.o.	up to1200 tr. only pad r.o.	Radial TPC No field wires	el. crosstalk	Micromegas r.o.

^a Expected performance.

cea

^b a = anode, p = pads, c = cathode grid.

+ T2K/HA-TPC (ERAM readout) : 2023

MPCD readout

^c o. on tr.: gate opens on trigger; cl.wo.tr. : opens before collision and closes without trigger; static : closed for ions only (see text).

H. J. Hike, "Time Projection Chambers", Repot On Progress In Physics (2010) p73-109

cea

THE T2K EXPERIMENT: TOKAI TO KAMIOKA ND280 IN 2010

5/23

THE T2K/ND280-TPC (2004-2007)

FROM THE FIRST IDEAS TO THE DESIGN CHOICES

GAS MIXTURE STUDIES, READOUT SEGMENTATION, FEE READOUT

T2K/TPCs GAS CHOICE : THE T2K GAS MIXTURE ONE OF IOANNIS (et al.) CONTRIBUTION

The TPC gas mixture properties have to comply with many design and operating TPC parameters :

- Electron drift velocity Vs electronics sampling frequency Vs maximum drift length
- Electron transverse diffusion Vs pad size for optimal charge sharing between adjacent pads (X,Y)
- ✓ Gas gain (electron multiplication by avalanche) in the charge amplification
- ✓ Stability of gas parameters Vs P, T, impurities, electric field, ...
- Electron attachment by electronegative components or impurities (Halogenides, oxygen)
- Ex: Ar(80)/CH₄(20) for PEP4, Ne(90)/CO₂(10)/N₂(5) for ALICE, Ar(95)/CF₄(3)/iC₄H₁₀(2) for T2K

C22

THE FINAL DESIGN OF THE T2K / V-TPC

THE T2K/ND280-TPC (2007-2009)

FROM THE PRE-PRODUCTION PROTOTYPE TO THE PRODUCTION

THE T2K/ND280-TPC (2009-2012) FROM THE FINAL ASSEMBLY TO THE EXPERIMENT

irfu A. Delbart, TPC for T2K

cea

Celebrating Ioannis Giomataris (CEA/Saclay, 5-6 october 2023) 11/23

THE UPGRADE OF THE T2K NEAR DETECTOR DEVELOPMENT: 2017-2024

Drift volume + field cage ERAM modules Module Frame MF	MF with 8 ERAM

cea

irtu

	HA-TPC	v-TPC
Parameter	Value	
$Overall x \times y \times z (m)$	$2.0\times0.8\times1.8$	0.85 x 2.2 x 1.8
Drift distance (cm)	90	
Magnetic Field (T)	0.2	
Electric field (V/cm)	275	
Gas Ar-CF ₄ -iC ₄ H ₁₀ (%)	95 - 3 - 2	
Drift Velocity $cm/\mu s$	7.8	
Transverse diffusion ($\mu m / \sqrt{cm}$)	265	
Micromegas gain	1000	
Micromegas dim. z×y (mm)	340x420	340x360
Pad $z \times y$ (mm)	10×11	7x10
N pads	36864	124272
el. noise (ENC)	800	
S/N	100	
Sampling frequency (MHz)	25	
N time samples	511	
Channel density (nb. / cm ²)	0.9	1.4

ND280 upgrade TPCs achievements

- First experiment to use ERAM detectors
- Performances similar or better than v-TPCs with ~1/3 less electronic channel density
- New innovative field cage design for high acceptance and dead volume reduction

THE NEW MICROMEGAS MODULES FOR THE HA-TPC THE ENCAPSULATED RESISTIVE ANODE MICROMEGAS

Ref: P. Colas/D. Attié ILC/TPC R&D (M.S. Dixit et al. NIM A518, p. 721, 2004

Choice of the Resistive foil technology for the HA-TPC micromegas readout - Charge spreading which should enable keeping the ~600 μ m spatial resolution with larger pads and improves it at short drift distance \rightarrow less electronic channels, cost reduction

- ASIC spark protection no longer needed \rightarrow more compact FEE, maximize HA-TPC acceptance - Encapsulated mesh @ GND + insulating layer \rightarrow potentially lower track distorsions & better S/N

FOCUS ON ERAM DEVELOPMMENT D. Attié et al. NIM A1052, (2023), 164288. doi.org/10.1016/j.nima.2023.168248							
	D. Attié et al. NIM A984, (2020), 16. <u>doi:10.1016/j.nima.2019.163286</u>	3286. D. Attié et al. NIM A1025, (2022), 1661 doi:10.1016/j.nima.2019.166109	1109. Nov. 12	Pre-series To series production			
ILC-TPC heritage	2018	2019	2020	▼ 2021			
CERN/T9 test beam DESY test beam ERAM-01 @ DESY 2021 ½ TPC @ CERN/T10 sept. 2022							
	2018 MM0-DLC#	2019 MM1-DLC1 & 2	2020 ERAM-P1 & P2	Production ERAM-xx (ERAM-01-28)			
Readout PCB	v-TPC PCB	HA-TPC V1 + ARC FEE	HA-TPC V2 + final FEE V1	HA-TPC V2 + final FEE V2			
Size	34 × 36 cm ²	34 × 42 cm ²	34 × 42 cm ²	34 × 42 cm ²			
Pads	48 × 36 cm ²	32 × 36 cm²	32 × 36 cm²	32 × 36 cm ²			
Pad size	6,85 × 9,65 mm²	10,09 × 11,18 mm ²	10,09 × 11,18 mm ²	10,09 × 11,18 mm ²			
Number of pads	1728	1152	1152	1152			
DLC resistivity (MΩ/sq.)	~2,5 (original foil) Not meas.on detector ILC/TPC foil	0,32-0,44 (batch#P1 foils) 0,2-0,27 (meas. on detector)	0,28-0,40 (batch#P1 foils) 0,15-0,22 (meas. on detector)	~1 (foils) / ~0.28-0,4 (det.) Top TPC: 1-1.5 (foils) After baking: 0,4-0,55			
RC _{design} [ns/mm ²] RC _{data} [ns/mm ²]	~260	50 <rc<70< td=""><td>15<rc<23< td=""><td>55<rc<78 102<rc<145< td=""></rc<145<></rc<78 </td></rc<23<></td></rc<70<>	15 <rc<23< td=""><td>55<rc<78 102<rc<145< td=""></rc<145<></rc<78 </td></rc<23<>	55 <rc<78 102<rc<145< td=""></rc<145<></rc<78 			
Insulation layer	200 μm glue + 50 μm APICAL	75 μm glue + 50 μm APICAL	200 μm glue + 50 μm APICAL	150 μm glue + 50 μm APICAL			
Expected σ (mm) For 200 ns peaking t For 412 ns peaking t	~1,6 ~2,3	~4 ~5,6	~6 ~8,5	~3,8 ~5,4			
dE/dX (measured 1 det.) Extrapol. to 2 detectors	9 to 9.5% (e- & p) <7%	9 to 9.5 % (e-) with 0.2T <7%	Energy resolution @5.9 keV ⁵⁵ Fe :	Energy resolution @5.9 keV ⁵⁵ Fe to be measured			
Spatial resolution (μm) Beam (Horizontal tracks) cosmics	300 (OT)	MM1-DLC1 200 (0 or 0.2T, 200/400 ns t _p) 700 (MM1-DLC2, @370V)	300-350 (ERAM-Px @370V)	@ DESY 07/ 21 380-300 (ERAM-01) for 200ns & 412ns			

THE ERAM ⁵⁵FE X-RAY TEST BENCH @ CERN

- ✓ Each ERAM is paired with 2 Front-End cards and "calibrated" for the use in the experiment
- Effective gain (ERAM * FE) and energy resolution @ 5.9 keV measurement on each pad with ERAM DLC layer at 350 V (nominal HV)
- $\checkmark~$ The 280 MBq ^{55}Fe X-ray source is collimated in a $\Phi7$ mm spot in the center of each pad
- ✓ The source is moved by an X-Y robot with respect to a reference pad which is "cross-scanned" with the source to locate its center (20 points every 1 mm in X&Y)
- ✓ Gas flow is 14I/h, the scan starts when RH<0.4 and stable, full scan duration 64h (3 mn/pad)
- ✓ Monitoring of "environmental conditions": Gas composition (supplier certificate), T_{amb}, P_{atm}, Δp_{chamber}, T_{gas}, Relative Humidity RH_{Gas out}
 Gain correlation with T/P
- ✓ HV scan (330 360 V) on pad x20/Y17 (gain tuning)
- ✓ Remote shifting with local hardware support

AN EXAMPLE OF A ⁵⁵FE X-RAY SCAN ERAM-30

Tester name: Sara, ERAM ID: ERAM30, Date: 2022-07-22 08:47:59 Source: Fe55, Comments: full scan with coordinates from cross-scan 412ns shaping time and 180s run time Ampl peak_thr: 50, Ampl. calc with neighbours: True Scanned: 1152/1152, total time: 65.29 h

AN EXAMPLE OF A ⁵⁵FE X-RAY SCAN ERAM-30

Tester name: Sara, ERAM ID: ERAM30, Date: 2022-07-22 08:47:59 Source: Fe55, Comments: full scan with coordinates from cross-scan 412ns shaping time and 180s run time Ampl peak_thr: 50, Ampl. calc with neighbours: True Scanned: 1152/1152, total time: 65.29 h

STATUS OF ERAM PRODUCTION (06/23) CERN MPGD WORKSHOP

RC MAP DERIVED FROM X-RAY SCANS

ref: D. Attié et al, Nucl.Instrum.Meth.A 1056 (nov 2023) Doi: 168534

THE T2K/ND280 UPGRADE HA-TPC ERAM MODULE + FEE + MECHANICALS

ERAM FEE : 2 x 576 ch. FECs + 1 digital FEM (~500 cm² cards)

T2K/ERAM detector (CERN MPGD workshop

32+4 ERAM modules (detector + FEE + cooling mechanicals) to produce (03-21 to 11-23)

Celebrating Ioannis Giomataris (CEA/Saclay, 5-6 october 2023) 20/23

« BOTTOM » HA-TPC ASSEMBLY INTEGRATION PROCESS FOR ½ TPC

ref: D. Henaff (CEA/IRFU) Coordination @ CERN bsg. 182

Final leak test of FC1 with Helium

Last cleaning inside the cage

First row of ERAM installed

Last ERAM installation

Leak test after ERAM installation

Field cage ready!

« BOTTOM » HA-TPC **FROM CERN TO JPARC (JAPAN)**

Final validation with cosmics at CERN

Gas rack: Control flow and monitor gas quality (GMC+sensors)

cea

Trigger: Readout of the two scintillator panels $(1m^2)$

Half HA-TPC: 27.5kV and 350V on ERAMs

Electronic rack: DAO, ERAM & electronic power supplies

x

Integration in ND280 « basket » at JPARC (8 sept 2023)

ref: T. Lux (IFAE)

CELEBRATING IOANIS !

Celebrating ...

Your scientific legacy in T2K, within the IRFU & worldwide « detector » communities (esp. RD51)

Your kindness and constant availability, always with a smile, for discussions, help and support

Personal thanks for ...

- Giving me the motivation for developping detectors for physics and enjoy it !
- Any souvenirs and stories to share of funny (and sometimes stressful !) situations that helped me build the way I manage the development of scientific instruments

ABOUT THE IMPORTANCE OF TEST BEAMS

V-TPC performance and requirements « metallic » anode bulk-micromegas

ERAM / DESY test beam 2021

D. Attié et al. NIM A1052, (2023), 164288. doi.org/10.1016/j.nima.2023.168248

