Valerio Ippolito INFN Sezione di Roma on behalf of the ATLAS and CMS collaborations

ATLAS AND CMS: THE PAST AND PENDING

highlights and future perspectives of LHC experiments

https://www.youtube.com/watch?v=7BA21a3vk Y [2001]

small prior

~ 50 years ago

Valerio Ippolito INFN Sezione di Roma

higher prior

even higher prior

~10 years ago

a relief (?)

P(new) ~ 10-×?

P(new) ~ ?

today

in 10 years

- make-believe: it's 2040, what's going on? predict the future, with all caveats
- we'll focus on today vs tomorrow whenever possible

• for a selection of topics

for the many more see <u>here</u> and <u>here</u>, and the Snowmass 2022 white paper

Valerio Ippolito INFN Sezione di Roma

bibliography will appear here

LHC / HL-LHC Plan

LHC

HL-LHC CIVIL ENGINEERING:

DEFINITION

EXCAVATION

HL-LHC

BUILDINGS

Trigger • L1 to 1 MHz • HLT to ~10 kHz (now: 0.1x)

Inner tracker (ITk)

- increased granularity
- 9 Si layers, less X₀
- to $|\eta| < 4$ (now: 2.5)

Muons

- updated electronics
- new barrel trigger layer

Calorimetry

updated electronics

Run: 447705 Event: 98869 2023-03-28 10:55:10 CEST

Timing layer (HGTD) endcap, LGAD

TDRs: here

L1 trigger

- tracks@40 MHz
- PFlow 750 kHz output
- 12.5 µs latency

DAQ/HLT

- 7.5 kHz output
- 40 MHz data scouting

Barrel calorimeters

- ECAL granularity readout @40MHz
- precise timing for 30 GeV e/gamma
- new ECAL/HCAL electronics

Endcap calorimeter

- 3D showers, precise timing
- Si, Scint+SiPM in Pb/W-SS

Tracker

Valerio Ippolito INFN Sezione di Roma

- less X₀
- increased granularity
 - in Si-strip & pixels
- to |η| < 3.8

MIP timing detector (MTD)
barrel: crystal+SiPM
endcap: LGAD

Luminosity

1% offline measurement, as ATLAS (2% online)

Muon system

- DT & CSC: new electronics
- new GEM/RPC 1.6 < $|\eta|$ < 2.4
- extended to $|\eta| < 3$

STADARDMODEL

STANDARD MODELEVERYWHERE

2023! THE W BOSON MASS

Valerio Ippolito INFN Sezione di Roma

constrain systematic uncertainties on data • $m_W = 80360 \pm 5 \text{ (stat.)} \pm 15(\text{syst.}) = 80360 \pm 16 \text{ MeV}$

<u>ATLAS-CONF-2023-004</u>

Shift m_W [MeV]

Ŋ

what does this tell us?

good agreement with electroweak fittension with recent CDF measurement

Valerio Ippolito INFN Sezione di Roma

12

m_w [MeV]

where can this go?

•larger Bjorken's x acceptance from enhanced $|\eta|$ coverage of LHC Phase-2

detectors

 requires dedicated lowluminosity run

• constrain PDF uncertainties

> something we've been doing combining HERA and 7, 8, 13 TeV LHC data (e.g. ATLASpdf21)

1) Amer

<u>ATL-PHYS-PUB-2018-026</u>, <u>Eur. Phys. J. C 82 (2022) 438</u>

- reduce uncertainties on valence quarks and gluon
- -V+jets: constrain high-x light-quark sea
- -ttbar: reduce uncertainty in high-x gluon
- -jets: reduce uncertainty in medium-high-x gluon
- •not big change when excluding >500 GeV "BSM"

a subset of "PDF estimation tools"

what	notably for			
high-mass Drell-Yan	large-x sea quarks			
ttbar differential distributions	large-x gluon			
high p⊤(Z) vs m _⊪	gluon and anti- quarks, mid-range x			
W+c	S			
isolated photons	mid-range x			
forward Z and W	s, c for large and small x			
inclusive jets	large-x gluon, valence quarks			

- •key message: HL-LHC data should reduce by a factor 2-4 uncertainties on e.g. Higgs boson or SUSY production
- careful programme ongoing with precision measurements at ATLAS and CMS

THE STRONG COUPLING CONSTANT

recoil depends on ISR, hence on α_{S}

• measure at $Q^2 = m_Z^2$ •low p_T(Z) regime not included in PDF fits: less correlation with α_s measurement

ATLAS-CONF-2023-015

~15M Z(ee/μμ) decays (8% with one forward e⁻)
 σ from Y_{lm} template fits to Collins-Soper angles (extrapolate to full phase space)

Valerio Ippolito INFN Sezione di Roma good agreement of theory with double-differential Z p_T/y xsec (normalization effects within 1.7% luminosity uncertainty)

- CMS jets
- W, Z inclusive
- tt inclusive
- τ decays
- PDF fits
- Electroweak fit
- Lattice
- World average

most precise result opens new precision era

THE WEAK MIXING ANGLE

extended inner tracker and muon system coverage (30% more events, 20% more precise PDFs)

Valerio Ippolito INFN Sezione di Roma

•from fit to A_{FB} vs rapidity, mass •can reach LEP+SLD 0.07% precision with ee & $\mu\mu$ •HL-LHC results dominated by **PDF** uncertainties

to the place where the possible and the impossible meet

Valerio Ippolito INFN Sezione di Roma

FOUR TOP-QUARK PRODUCTION

2023

02

0

Events

10³ ⊨

10²

10

10⁻¹

2.1

0.1

0.2

Data / Pred

ATLAS

Post-Fit

SR

selection and b-tagging

leitmotiv: improved background estimation techniques and Machine Learning (ML) are making LHC exceed expectations

arXiv:2303.15061, CMS-PAS-TOP-2022-013

THE TOP-QUARK MASS

- today:
- •top-quark mass measured to less than 0.3%
- •ttbar cross-section to 1.8%

tomorrow

- •can go to ~0.1%
- requires same detector performance as pre-HL phase
- •MC modelling is crucial!

VECTOR-BOSON SCATTERING

Valerio Ippolito INFN Sezione di Roma

• diboson physics reached few % precision already (left: ww) •VBS: confirmed all major channels with Run-2 data • e/μ final states: from >20% (Run-2) to 3% (WW)-10% (ZZ) precision at HL-LHC thanks to increased statistics

•also **semi-leptonic** with ML substructure •longitudinally-polarised-V scattering puts **BEH**

mechanism at a test (e.g. Run-2 W_LZ_L at $\underline{7\sigma}$)

HL-LHC reach might be a playground for more advanced analysis techniques

WZjj purity vs (WZjj+pileup)

pile-up suppression with HGTD will improve sensitivity to high-q² new physics

high centrality to discriminate QCD and EW WZ production

$H \rightarrow ZZ^* \rightarrow 4l$ projections for 30 fb⁻¹

Higgs mass (GeV)	120	130
Signal	4.1	11.4
tt	0.01	0.02
Zbb	0.08	0.12
ZZ*	1.23	2.27
$ZZ \rightarrow \tau \tau ll$	0.13	0.20
Significance (S/\sqrt{B})	3.4	7.0
Significance (Poisson)	2.4	4.8

[1999]

HIGGS BOSON: THE MASS

- -ZZ/H(ZZ) matrix-element discriminant (+4%) -assuming same e/μ energy scale/resolution as in Run-2
- •improves further with Phase-2 detectors
- -new tracker: m_{4µ} resolution +25%
- -larger muon acceptance: 4µ rate accuracy +7%
- -both would reduce stat uncertainty from 28 to 20 MeV

 m_{H} [GeV]

HL-LHC from Run-2 Monte Carlo

	Mass uncertainty (MeV)				
	Combined	4μ	4e	$2e2\mu$	1
Stat. uncertainty	22	28	83	51	
Syst. uncertainty	20	15	189	94	
Total	30	32	206	107	

arXiv:2207.00320, CMS-PAS-FTR-21-007

- •HL-LHC improves Run-2 yy results by 3x
- -new tracker (less material)
- -HGCAL precision and stability
- -barrel calorimeters
- -pile-up suppression from MTD
- •limited by photon energy scale (0.05%)

```
ATLAS LAr upgrade
neutralises pile-up
worsening wrt Run-2
```


ATLAS-TDR-027, CMS-PAS-FTR-21-008, CMS-PAS-FTR-21-007

HIGGS BOSON: THE SPIN-PARITY STATE

(0+/0- admixture with CP violation?) VBF $H \rightarrow \chi \chi$ and $ttH/H \rightarrow \tau \tau$ production •HL-LHC stat limited...

ATL-PHYS-PUB-2013-013, arXiv:2303.05974, CMS-PAS-FTR-18-011, arXiv:2110.04836, arXiv:2208.02338

HIGGS BOSON: PRODUCTION

•HL-LHC precision from 1.6% (ggF) to 5.7% (WH)

Valerio Ippolito INFN Sezione di Roma

$\sqrt{s} = 14 \text{ TeV}, 3000 \text{ fb}^{-1} \text{ per experiment}$					
ATLAS and CMS					
ntal	HL-LHC	C Projec	ctior	n	
Uncertainty [%]					[%]
		Tot	Stat	Ехр	Th
		1.6	0.7	0.8	1.2
		3.1	1.8	1.3	2.1
		5.7	3.3	2.4	4.0
		4.2	2.6	1.3	3.1
1		4.3	1.3	1.8	3.7
0.06	3 0.08	0.1	0.	12	0.14
cpected relative uncertainty					

https://www.youtube.com/watch?v=qN5zw04WxCc

[1965, just after BEH]

33

Valerio Ippolito INFN Sezione di Roma

present > forecast → future > forecast'?

HIGGS BOSON: THIRD GENERATION

•12% precision on y_t from ttH(bb) •opposite-sign 2-lepton final state could reach observation with 1000 fb⁻¹

•reach 2.5% precision on y_{τ} •0(10%) uncertainty on current simplifiedtemplate-cross-section (STXS) bins

Valerio Ippolito INFN Sezione di Roma

ATL-PHYS-PUB-2022-003

CMS Experiment at the LHC, CERN Data recorded: 2017-Oct-20 03:55:39.135168 GMT Run / Event / LS: 305313 / 624767783 / 361

> target VH(bb)
> ML essential for b-tagging and S/B discrimination
> bin in p_T(V), Njets, SR/CR
> HL:LHC: syst limited, mainly from signal modeling -STXS cross-section with 8-17% uncertainty vs p_T(V)

ATL-PHYS-PUB-2022-047

HIGGS BOSON: SECOND GENERATION

• $H \rightarrow cc$ (SM: BR=3%) -VH search, multiple regions -simultaneous $H \rightarrow bb$ and $H \rightarrow cc$ fit -dedicated ML for c-tagging

Valerio Ippolito INFN Sezione di Roma

• current reach ~14x σ_{SM} , 1.1 < $|k_c|$ < 5.5 -VW and VZ used to validate method (evidence/observation) -also: DNN techniques to target boosted decays

Eur. Phys. J. C (2022) 82:717, arXiv:2205.05550, arXiv:2211.14181

assume 3% and 5% uncertainty on bb and cc tagging (CMS), constrained on data

• **bb** misidentified as cc is the worry, 20% uncertainty assumed on the rate

- Iimited Monte Carlo statistics can be an issue, neglected in projections
- HL-LHC reach 6.4x SM, H-charm coupling modifier $|k_{c}| < 3$

Valerio Ippolito INFN Sezione di Roma

<u>ATL-PHYS-PUB-2021-039, CMS-PAS-HIG-21-008</u>

• $H \rightarrow J/\Psi Z/\chi, H \rightarrow \Upsilon \Upsilon (c)$

with µµ quarkonium decays

- current limits 10²-10³ times the SM BR
- -might observe them at HL-LHC (a handful of events)
- -overall, may reach k_c~1 with ATLAS+CMS+LHCb

Valerio Ippolito INFN Sezione di Roma

Channel	3000 fb^{-1}	(×SM)	4500 fb^{-1}	(
$H \rightarrow ZJ/\psi$	2.9×10^{-4}	(126)	2.7×10^{-4}	(
$H \rightarrow \Upsilon(mS)\Upsilon(nS)$	1.3×10^{-5}	(0.2)	8.5×10^{-6}	(

<u>CMS-PAS-FTR-21-009</u>

- •H \rightarrow µµ: SM BR is 2x10⁻⁴, and S/B~10⁻³
- •Run-2 $H \rightarrow \mu\mu$: first evidence at CMS, 36% xsec uncertainty (stat limited)
- categorisation based on production process

- •ggF(mass)+VBF(DNN) extrapolate to HL-LHC
- (15-18% more background)
- •should reach 4% uncertainty on k_u

HIGGS BOSON: TOWARDS FIRST GENERATION

- • $H \rightarrow \rho Z/\gamma (u/d), H \rightarrow \varphi Z/\gamma (s)...$ -very challenging (BR~10⁻⁵/10⁻⁶)
- •not to mention $H \rightarrow ee...$

Valerio Ippolito INFN Sezione di Roma

arXiv:2208.00265, PLB 801(2020)135148

LEPTON-FLAVOUR-VIOLATING DECAYS

Uncertainties	Extrapolation SF	MC template method	Symmetry method
$ au_{had-vis}$ ID, statrelated	0.00	\checkmark	-
$ au_{\text{had-vis}}$, others	1.00	\checkmark	-
Electron and muon	1.00	\checkmark	\checkmark
Flavour tagging c - and b -jets	0.50	\checkmark	\checkmark
Jet, others	1.00	\checkmark	\checkmark
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.50	\checkmark	\checkmark
Fake bkg., statrelated	0.21	\checkmark	\checkmark
Fake bkg., others	1.00	\checkmark	\checkmark
Lepton eff. corr., statrelated	0.21	-	\checkmark
Lepton eff. corr., others	1.00	-	\checkmark
Z bkg. modelling, PDF	0.40	\checkmark	-
Z bkg. modelling, others	0.50	\checkmark	-
Top-quark bkg. modelling, PDF	0.40	\checkmark	-
Top-quark bkg. modelling, others	0.50	\checkmark	-
Higgs modelling, PDF, ggF	0.41	\checkmark	\checkmark
Higgs modelling, PDF, VBF H	0.46	\checkmark	\checkmark
Higgs modelling, PDF, VH	0.46	\checkmark	\checkmark
Higgs modelling, others	0.50	\checkmark	\checkmark
Luminosity	0.59	\checkmark	\checkmark

Valerio Ippolito INFN Sezione di Roma

• $H \rightarrow \tau e/\tau \mu$

- •two complementary methods
 - -data-driven (τ_{lep} , best for VBF)
 - -MC-based (τ_{lep} + τ_{had} , best for ggF)
- •3-4x improvement w.r.t Run-2 from luminosity and improved systematics

HIGGS BOSON: DECAY

- HL-LHC theory dominated BRs: γγ (2.6%), ZZ (2.9%), WW (2.8%), ττ (2.9%), bb (4.4%)
- •HL-LHC **stat** dominated BRs: µµ (8.2%), Zɣ (19.1%)
- • κ framework uncertainties at the % level

-except Ζγ

- •k_t, k_b, k_g dominated by theory uncertainties
- •2.5% uncertainty on BR_{bsm} -assuming |k_V|<1 to avoid degeneracies

$$\sigma \times BR(i \to H \to f) = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H} = \frac{\sigma_i^{\mathsf{SM}} \cdot \Gamma_f^{\mathsf{SM}}}{\Gamma_H^{\mathsf{SM}}} \left(\frac{\sigma_i^{\mathsf{SM}} \cdot \Gamma_f^{\mathsf{SM}}}{\Gamma_H^{\mathsf{SM}}} \right)$$

<u>CERN-2019-007</u>

HIGGS BOSON: WIDTH

- model-independent: limited by detector resolution (SM value is 4 MeV!)
- •can be derived in the κ framework assuming $|k_V| < 1$ -HL-LHC: CMS can reach 4% uncertainty
- •but also comparing the on-shell vs off-shell $H \rightarrow ZZ$ production
- -Run-2: 3.2 (4.6) MeV at CMS (ATLAS) with ~50% uncertainty -ATLAS+CMS combination may reach **20% uncertainty**, dominated by theory

	Mass	s unce	ertainty	(MeV)		Width upper limit at 95 % CL (MeV)
	Combined	4μ	4e	2e2µ	2µ2e	Combined
Stat. uncertainty	22	28	83	51	59	94
Syst. uncertainty	20	15	189	94	95	150
Total	30	32	206	107	112	177

	POOR	LY	DR	AWN	LIN
--	------	----	----	-----	-----

ATL-PHYS-PUB-2015-024, CMS-PAS-FTR-18-011

48

Valerio Ippolito INFN Sezione di Roma

THE BEH POTENTIAL: NON-RESONANT HH

- most sensitive to λ_{HHH} (can also be done with e.g. ttH+tH, H $\rightarrow \gamma\gamma$...)
- 1/1000 wrt single Higgs production, ggF-dominated
- use one H decaying to large-BR channel
- currently stat dominated

Valerio Ippolito INFN Sezione di Roma

σ smallest in SM-ish region

getting closer...

arXiv:2211.01216, Nature 607 (2022) 60-68

current limits

 4σ from combination, 4.5σ without systematics • and these were preliminary (combined) projections...

CERN-2019-007

• bbyy: ML discriminants, to reduce ttH(yy) bkg and y(y)+jets, $\sim 2\sigma$

CMS-PAS-FTR-21-004, ATL-PHYS-PUB-2022-053

2-053

•impact of b-tagging on discovery significance for HH in bbbb final state

ATL-PHYS-PUB-2022-053

Source	Scale factor	b̄bγγ	$bar{b} au^+ au^-$	bbb
Experimental Uncertainties				
Luminosity	0.6	*	*	*
<i>b</i> -jet tagging efficiency	0.5	*	*	*
<i>c</i> -jet tagging efficiency	0.5	*	*	*
Light-jet tagging efficiency	1.0	*	*	*
Jet energy scale and resolution, $E_{\rm T}^{\rm miss}$	1.0	*	*	*
κ_{λ} reweighting	0.0	*	*	
Photon efficiency (ID, trigger, isolation efficiency)	0.8	*		
Photon energy scale and resolution	1.0	*		
Spurious signal	0.0	*		
Value of m_H	0.08	*		
τ_{had} efficiency (statistical)	0.0		*	
τ_{had} efficiency (systematic)	1.0		*	
$ au_{had}$ energy scale	1.0		*	
Fake- τ_{had} estimation	1.0		*	
MC statistical uncertainties	0.0		*	
Background bootstrap uncertainty	0.5			*
Background shape uncertainty	1.0			*
Theoretical Uncertainties	0.5	*	*	*

- complemented by search for heavy resonances decaying into HH
 - a client for improved b-tagging (e.g. $X \rightarrow HH \rightarrow bbbb$)
- HL-LHC improves reach in $> \sim 3$ TeV region

ATL-PHYS-PUB-2021-031, CMS summary, CMS-PAS-FTR-18-003, ATL-PHYS-PUB-2020-019, CMS-DP-2021-017, CMS-PAS-HIG-20-016

HIGGS PORTAL

VBF is the driver

today: BR(H→inv) < 9.3% @ 90% CL • HL-LHC: improve by a factor ~3

arXiv:2301.10731, ATL-PHYS-PUB-2013-014, CMS-PAS-FTR-18-016

detection before ~10 years

SM particles

Higgs boson

[2007 < LHC start]

SUPERSYMMETRY

today: • ~1 TeV neutralino bounds ~2 TeV gluino bounds

ATL-PHYS-PUB-2023-005

ATLAS SUSY Searches* - 95% CL Lower Limits

March 2023

	Model	Signature	$\int \mathcal{L} dt$ [fb ⁻	Mass limit		Reference
S	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_1^0$	$\begin{array}{ccc} 0 \ e, \mu & 2-6 \ { m jets} & E \\ { m mono-jet} & 1-3 \ { m jets} & E \end{array}$	T_{T}^{miss} 139 T_{T}^{miss} 139		1.0 1.85 $m(\tilde{\chi}_1^0) < 400 \text{ GeV}$ $m(\tilde{a}) - m(\tilde{\chi}_1^0) = 5 \text{ GeV}$	2010.14293 2102.10874
arche	$\tilde{g}\tilde{g}, \tilde{g} {\rightarrow} q \bar{q} \tilde{\chi}_1^0$	0 <i>e</i> ,μ 2-6 jets <i>E</i>	T_T^{miss} 139	ğ ğ Forbida	2.3 $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ len 1.15-1.95	2010.14293 2010.14293
Se	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_1^0$	1 <i>e</i> , <i>µ</i> 2-6 jets	139	$ ilde{g}$	2.2 $m(\tilde{\chi}_1^0) < 600 \text{GeV}$	2101.01629
Ve	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q}(\ell \ell) \tilde{\chi}^0_1$	$ee, \mu\mu$ 2 jets E	$T_{T_{\rm c}}^{\rm miss}$ 139	\widetilde{g}	2.2 $m(\tilde{\chi}_1^0) < 700 \text{GeV}$	2204.13072
clusi	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	$\begin{array}{ccc} 0 \ e, \mu & ext{7-11 jets} & E \ ext{SS} \ e, \mu & ext{6 jets} \end{array}$	${z_T^{miss}}$ 139 139	ε ε ε ε	1.97 $m(\tilde{\chi}_1^0) < 600 \text{ GeV}$ 1.15 $m(\tilde{g})-m(\tilde{\chi}_1^0)=200 \text{ GeV}$	2008.06032 1909.08457
ŭ	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_1^0$	$\begin{array}{cccc} \text{0-1} \ e,\mu & \text{3} \ b & E \\ \text{SS} \ e,\mu & \text{6 jets} \end{array}$	Z_T^{miss} 139 139	ρο 200	2.45 $m(\tilde{\chi}_1^0) < 500 \text{ GeV}$ 1.25 $m(\tilde{g}) - m(\tilde{\chi}_1^0) = 300 \text{ GeV}$	2211.08028 1909.08457
	$ ilde{b}_1 ilde{b}_1$	0 <i>e</i> , μ 2 <i>b</i> E	T_T^{miss} 139	\tilde{b}_1 \tilde{b}_1 0.68	1.255 $m(\tilde{\chi}_1^0) < 400 \text{ GeV}$ 10 GeV $< \Delta m(\tilde{b}_1, \tilde{\chi}_1^0) < 20 \text{ GeV}$	2101.12527 2101.12527
arks tion	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$T_T^{\rm miss}$ 139 $T_T^{\rm miss}$ 139	\tilde{b}_1 Forbidden 0.13-0.85	0.23-1.35 $\Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, \ m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV} \\ \Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, \ m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV}$	1908.03122 2103.08189
due	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	0-1 $e, \mu \ge 1$ jet E	E_T^{miss} 139	$ ilde{t}_1$	1.25 $m(\tilde{\chi}_1^0)=1 \text{ GeV}$	2004.14060, 2012.03799
n. s Droc	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow Wb\tilde{\chi}_1^0$	1 e, μ 3 jets/1 b E	$E_T^{\rm miss}$ 139	<i>ĩ</i> ₁ Forbidden 0.65	$m(ilde{\mathcal{X}}_1^0)$ =500 GeV	2012.03799
ger ct p	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 b \nu, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$	1-2 τ 2 jets/1 b E	T_{T}^{miss} 139	ĩ1 Forbidden	1.4 $m(\tilde{\tau}_1)=800 \text{GeV}$	2108.07665
3 ^{ra} dire	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	$\begin{array}{cccc} 0 \ e, \mu & 2 \ c & E \\ 0 \ e, \mu & mono-jet & E \end{array}$	${Z_T^{miss}}$ 36.1 ${Z_T^{miss}}$ 139	\tilde{t}_1 0.85 \tilde{t}_1	$m(\tilde{\chi}_1^0)=0~GeV$ $m(\tilde{\iota}_1,\tilde{c})-m(\tilde{\chi}_1^0)=5~GeV$	1805.01649 2102.10874
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h\tilde{\chi}_1^0$	1-2 e, μ 1-4 b E	T_{T}^{miss} 139	\tilde{t}_1 0.0	67-1.18 $m(\tilde{\chi}_2^0) = 500 \text{ GeV}$	2006.05880
	$\tilde{t}_2\tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	$3 e, \mu$ $1 b E$	E_T^{miss} 139	<i>ī</i> ₂ Forbidden 0.86	$m(\tilde{\chi}_1^0)$ =360 GeV, $m(\tilde{t}_1)$ - $m(\tilde{\chi}_1^0)$ = 40 GeV	2006.05880
	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	$\begin{array}{lll} \text{Multiple }\ell/\text{jets} & E\\ ee, \mu\mu & \geq 1 \text{ jet} & E \end{array}$	$Z_T^{\rm miss}$ 139 $Z_T^{\rm miss}$ 139	$ \begin{array}{ccc} \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{0}^{0} & & & \\ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} & & & \\ \end{array} $	6 $m(\tilde{\chi}_1^0)=0$, wino-bino $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)=5$ GeV, wino-bino	2106.01676, 2108.07586 1911.12606
	$ ilde{\chi}_1^{\pm} ilde{\chi}_1^{\mp}$ via WW	2 <i>e</i> , <i>µ E</i>	$T_T^{\rm miss}$ 139	$\tilde{\chi}_1^{\pm}$ 0.42	$m(\tilde{\chi}_1^0)=0$, wino-bino	1908.08215
	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via Wh	Multiple ℓ /jets E	E_T^{miss} 139	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ Forbidden	1.06 $m(\tilde{\chi}_1^0)=70$ GeV, wino-bino	2004.10894, 2108.07586
t	$ ilde{\chi}_1^{\pm} ilde{\chi}_1^{\mp}$ via $ ilde{\ell}_L/ ilde{ u}$	2 <i>e</i> , <i>µ E</i>	$T_{T_{\rm c}}^{\rm miss}$ 139	$\tilde{\chi}_1^{\pm}$	$\mathbf{m}(\tilde{\ell},\tilde{\nu})=0.5(\mathbf{m}(\tilde{\chi}_{1}^{\pm})+\mathbf{m}(\tilde{\chi}_{1}^{0}))$	1908.08215
	$\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_{1}^{0}$	2τ E	E_T^{miss} 139	$\tilde{\tau}$ [$\tilde{\tau}_{L}, \tilde{\tau}_{R,L}$] 0.16-0.3 0.12-0.39	$m(\tilde{\chi}_1^0)=0$	1911.06660
di I	$\ell_{\mathrm{L,R}} \ell_{\mathrm{L,R}}, \ell \rightarrow \ell \chi_1^\circ$	$2 e, \mu$ 0 jets E $ee, \mu\mu$ ≥ 1 jet E	Z_T^{miss} 139 Z_T^{miss} 139	$\tilde{\ell}$ 0.256 0.7	$m(\tilde{\mathcal{X}}_1^0)=0$ $m(\tilde{\mathcal{X}}_1^0)=10~GeV$	1908.08215 1911.12606
	$\tilde{H}\tilde{H},\tilde{H}{ ightarrow}h\tilde{G}/Z\tilde{G}$	$0 e, \mu \geq 3 b E$	$\mathcal{I}_{\mathcal{I}_{\text{riss}}}^{\text{miss}}$ 36.1	<i>H</i> 0.13-0.23 0.29-0.88	$BR(\tilde{\chi}^0_{1} \to h\tilde{G})=1$	1806.04030
		$4 e, \mu$ 0 jets E 0 e μ > 2 large jets E	T_{T}^{miss} 139	\tilde{H} 0.55 $\tilde{\mu}$ 0.45-0.9	$BR(\tilde{\chi}_1^0 \to Z\tilde{G}) = 1$ $RP(\tilde{\chi}_1^0 \to Z\tilde{G}) = 1$	2103.11684 2108.07586
		$2 e, \mu \ge 2$ jets E	E_T^{miss} 139	й 0.43-0.34 <i>Й</i> 0.77	$BR(\tilde{\chi}_1^0 \to Z\tilde{G}) = BR(\tilde{\chi}_1^0 \to h\tilde{G}) = 0.5$	2204.13072
	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk 1 jet E	$T_T^{\rm miss}$ 139	$\tilde{\chi}^{\pm}_{\tilde{z}^{\pm}}$ 0.66	Pure Wino	2201.02472
ed			mice	x ₁ 0.21	Pure niggsino	2201.02472
-liv cle	Stable \tilde{g} R-hadron	pixel dE/dx E	T_T 139	\tilde{g}	2.05	2205.06013
arti	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq\chi_1^{\circ}$	Displen E	$T_T = 139$	$ \begin{array}{c} g [\tau(g) = 10 \text{ hs}] \\ \tilde{e} \tilde{u} 0.7 \end{array} $	2.2 $m(\chi_1)=100 \text{ GeV}$	2205.06013
D G	$tt, t \rightarrow tG$		T 139	$\tilde{\tau}$ 0.34	$\tau(\tilde{\ell}) = 0.1 \text{ ns}$ $\tau(\tilde{\ell}) = 0.1 \text{ ns}$	2011.07812
		pixel dE/dx E	T_T^{miss} 139	<i>τ</i> 0.36	$ au(ilde{\ell})=$ 10 ns	2205.06013
	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{\pm} \rightarrow Z\ell \rightarrow \ell\ell\ell$	3 <i>e</i> , <i>µ</i>	139	$\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{1}^{0}$ [BR($Z\tau$)=1, BR(Ze)=1] 0.625	1.05 Pure Wino	2011.10543
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^{0} \to WW/Z\ell\ell\ell\ell\nu\nu$	4 e, μ 0 jets E	$E_T^{\rm miss}$ 139	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0] $	5 1.55 $m(\tilde{\chi}_1^0)=200 \text{ GeV}$	2103.11684
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$	4-5 large jets	36.1	$\tilde{g} [m(\tilde{\chi}_1^0)=200 \text{ GeV}, 1100 \text{ GeV}]$	1.3 1.9 Large λ_{112}''	1804.03568
>	$\tilde{t}\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow tbs$	Multiple	36.1	$t [\lambda_{323}''=2e-4, 1e-2]$ 0.55	1.05 $m(\tilde{\chi}_1^0)$ =200 GeV, bino-like	ATLAS-CONF-2018-003
RF	$\overrightarrow{tt}, \overrightarrow{t} \to b\overrightarrow{X_1}, \overrightarrow{X_1} \to bbs$	$\geq 4b$	139	t Forbidden 0.9	5 $m(\tilde{\chi}_1^x)$ =500 GeV	2010.01015
	$ \begin{array}{c} t_1 t_1, t_1 \rightarrow bs \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c^{\ell} \end{array} $	2 Jets + 2 b	36.7	$t_1 \ [qq, bs] $ 0.42 0.61	D A 1 A 5 D D A A A A A A A A	1/10.07171
	$\iota_1\iota_1, \iota_1 \rightarrow q\iota$	$2e,\mu$ $2b$ 1μ DV	36.1 136	\tilde{t}_1 [1e-10< λ'_{23k} <1e-8, 3e-10< λ'_{23k} <3e-9]	1.0 1.6 $BR(\tilde{t}_1 \rightarrow pe/p\mu) > 20\%$ BR $(\tilde{t}_1 \rightarrow q\mu) = 100\%, \cos\theta_t = 1$	2003.11956
	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0/\tilde{\chi}_1^0, \tilde{\chi}_{1,2}^0 \rightarrow tbs, \tilde{\chi}_1^{\pm} \rightarrow bbs$	1-2 $e, \mu \ge 6$ jets	139	$\tilde{\chi}_{1}^{0}$ 0.2-0.32	Pure higgsino	2106.09609
	,					
				<u> </u>		
Only	a selection of the available ma	ass limits on new states c	or 1	D ⁻¹	¹ Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

Valerio Ippolito INFN Sezione di Roma

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}$

Mass scale [TeV]

ł	HL/HE-LHC \$	SUSY	Search	HL-LHC , $\int \mathcal{L} dt = 3d$	b^{-1} : 5 σ discovery (95% CL exclusion)	Si	mulation Prelim	inary							
	Model	e, μ, τ, γ	Jets	HE-LHC, J <i>L</i> dt = 15 Mass limit	ab^{-1} : 5σ discovery (95% CL exclusion)		$\sqrt{s} = 14, 2$ Section	27 TeV							
	$\tilde{a}\tilde{a}$ $\tilde{a} \rightarrow a \tilde{a} \tilde{\chi}^0$	0	4 iets	p p	2.9 (3.2) TeV	$m(\tilde{\mathcal{V}}_{\cdot}^{0})=0$	211								
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$	0	4 jets	õ Ĩ	5.2 (5.7) TeV	$m(\tilde{\chi}_1^0)=0$ $m(\tilde{\chi}_1^0)=0$	2.1.1								
ino	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_1^0$	0	Multiple	ĝ	2.3 (2.5) TeV	$m(\tilde{\chi}_1^0)=0$	2.1.3								
GL	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \bar{c} \tilde{\chi}_1^0$	0	Multiple	Ĩ	2.4 (2.6) TeV	$m(\tilde{\chi}_1^0)$ =500 GeV	2.1.3								
	NUHM2, $\tilde{g} \rightarrow t\tilde{t}$	0	Multiple/2b	ğ	5.5 (5.9) TeV		2.4.2								
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	0	Multiple/2b	Ĩ1	1.4 (1.7) TeV	$m(\tilde{\chi}_1^0)=0$	2.1.2, 2.1.3								
top	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_1^0$	0	Multiple/2b	\tilde{t}_1	0.6 (0.85) TeV	$\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim m(t)$	2.1.2			· • • • •				<i></i> .	
S	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow b\tilde{\chi}^{\pm}/t\tilde{\chi}_1^0, \tilde{\chi}_2^0$	0	Multiple/2b	ĩ	3.16 (3.65) TeV		2.4.2	Model	spin 95 %	6 CL Lim	nit (solid),	<u>5 σ D</u>	iscove	ry (dash)	
	$\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^\pm \rightarrow W^\pm \tilde{\chi}_1^0$	2 <i>e</i> , µ	0-1 jets	$\tilde{\chi}_1^{\pm}$	0.66 (0.84) TeV	$m(\tilde{\chi}_1^0)=0$	2.2.1	$KK \rightarrow 4b$	2						I
alino,	$ ilde{\chi}_1^{\scriptscriptstyle \pm} ilde{\chi}_2^{\scriptscriptstyle 0}$ via WZ	3 e, µ	0-1 jets	$ ilde{\chi}_1^{\pm}/ ilde{\chi}_2^0$	0.92 (1.15) TeV	$m(\tilde{\chi}_1^0)=0$	2.2.2	$HVT \rightarrow VV$	1						
harg	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via Wh, Wh $ ightarrow \ell \nu b ar{b}$	1 e, µ	2-3 jets/2b	$ ilde{\chi}_1^{\pm}/ ilde{\chi}_2^0$	1.08 (1.28) TeV	$m(\tilde{\chi}_1^0)=0$	2.2.3	$G \rightarrow W^+ W^-$							
0 5	$\tilde{\chi}_2^{\pm} \tilde{\chi}_4^0 \rightarrow W^{\pm} \tilde{\chi}_1^0 W^{\pm} \tilde{\chi}_1^{\pm}$	2 <i>e</i> , <i>µ</i>	-	$\tilde{\chi}_2^{\pm}/\tilde{\chi}_4^0$	0.9 TeV	$m(\tilde{\chi}_{1}^{0})$ =150, 250 GeV	2.2.4	$G_{RS} \rightarrow VV VV$							
0	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 + \tilde{\chi}_2^0 \tilde{\chi}_1^0, \tilde{\chi}_2^0 \rightarrow Z \tilde{\chi}_1^0, \tilde{\chi}_1^{\pm} \rightarrow W \tilde{\chi}_1^0$	2 <i>e</i> , μ	1 jet	$ ilde{\chi}_1^{\pm}/ ilde{\chi}_2^0$	0.25 (0.36) TeV	$m(\tilde{\chi}_1^0)=15GeV$	2.2.5.1	$G_{RS} \rightarrow tt_{-}$							
lisgt	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 + \tilde{\chi}_2^0 \tilde{\chi}_1^0, \tilde{\chi}_2^0 \rightarrow Z \tilde{\chi}_1^0, \tilde{\chi}_1^{\pm} \rightarrow W \tilde{\chi}_1^0$	2 <i>e</i> , <i>µ</i>	1 jet	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$	0.42 (0.55) TeV	$m(\tilde{\chi}_1^0)=15GeV$	2.2.5.1	$Z_{TC2} \rightarrow tt$	1						
Hig	$ ilde{\chi}_2^0 ilde{\chi}_1^{\pm}, ilde{\chi}_1^{\pm} ilde{\chi}_1^{\mp}, ilde{\chi}_1^{\pm} ilde{\chi}_1^{\pm}$	2 μ	1 jet	$ ilde{\chi}^0_2$	0.21 (0.35) TeV	$\Delta m(ilde{\chi}^0_2, ilde{\chi}^0_1) {=} 5{ m GeV}$	2.2.5.2	$Z_{SSM}^{'} \rightarrow t\bar{t}$	1						
Wino	$ ilde{\chi}_2^{\pm} ilde{\chi}_4^0$ via same-sign WW	2 e,µ	0	Wino	0.86 (1.08) TeV		2.4.2	$Z^{'}_{\psi} ightarrow \ell^+ \ell^-$	1						
	$ ilde{ au}_{L,R} ilde{ au}_{L,R}, ilde{ au} ightarrow au^{0}_{1}$	2 τ	-	τ	0.53 (0.73) TeV	$m(\tilde{\chi}_1^0)=0$	2.3.1	$Z_{SSM}^{\prime} \rightarrow \ell^{+}\ell^{-}$	1						
Stau	τ̃τ	$2\tau,\tau(e,\mu)$	-	$ ilde{ au}$	0.47 (0.65) TeV	$m(\tilde{\chi}_{1}^{0})=0, m(\tilde{\tau}_{L})=m(\tilde{\tau}_{R})$	2.3.2	$\mathbf{Z}'_{} \mathbf{T}^+ \mathbf{T}^-$	1	/ Det land the land the land the land the land th					
0)	ĩĩ	$2\tau, \tau(e,\mu)$	-	τ	0.81 (1.15) TeV	$m(\tilde{\chi}_1^0)=0, m(\tilde{\tau}_L)=m(\tilde{\tau}_R)$	2.3.4	$\simeq_{SSM} \rightarrow c^{-}c^{-}c^{-}c^{-}c^{-}c^{-}c^{-}c^{-}$							
	$ ilde{\chi}_1^{\pm} ilde{\chi}_1^{\mp}, ilde{\chi}_1^{\pm} ilde{\chi}_1^0$, long-lived $ ilde{\chi}_1^{\pm}$	Disapp. trk.	1 jet	$\tilde{\chi}_1^{\pm}$ [$\tau(\tilde{\chi}_1^{\pm})=1$ ns]	0.8 (1.1) TeV	Wino-like $ ilde{\chi}_1^{\pm}$	4.1.1	$W_{SSM} \rightarrow TV$			ī	_			
	$ ilde{\chi}_1^{\pm} ilde{\chi}_1^{\mp}, ilde{\chi}_1^{\pm} ilde{\chi}_1^0$, long-lived $ ilde{\chi}_1^{\pm}$	Disapp. trk.	1 jet	$ ilde{\chi}^{\pm}_1 = [au(ilde{\chi}^{\pm}_1) = 1 ext{ns}]$	0.6 (0.75) TeV	Higgsino-like $ ilde{\chi}_1^{\pm}$	4.1.1	$W_{SSM} \rightarrow \ell v$	1						
	MSSM, Electroweak DM	Disapp. trk.	1 jet	DM mass	0.88 (0.9) TeV	Wino-like DM	4.1.3	$W_{B}^{\prime} \rightarrow tb \rightarrow bb\ell v$	1						
pa s	MSSM, Electroweak DM	Disapp. trk.	1 jet	DM mass	2.0 (2.1) TeV	Wino-like DM	4.1.3	$Q^* \rightarrow ii$	1					-	
g-liv rticle	MSSM, Electroweak DM	Disapp. trk.	1 jet	DM mass	0.28 (0.3) TeV	Higgsino-like DM	4.1.3	Majorana'	2						
Lon	MSSM, Electroweak DM	Disapp. trk.	1 jet	DM mass	0.55 (0.6) TeV	Higgsino-like DM	4.1.3	$V \rightarrow t qq$	2						
	\tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$	0	Multiple	$\tilde{g} = [\tau(\tilde{g}) = 0.1 - 3 \text{ ns}]$	3.4 TeV	m($\tilde{\chi}_1^0$)=100 GeV	4.2.1	v^{meavy} $(m_N = m_E)$							
	\tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$	0	Multiple	$\tilde{g} = [\tau(\tilde{g}) = 0.1 - 10 \text{ ns}]$	2.8 TeV		4.2.1	$\ell^* o \ell^{\prime} \gamma$	$\frac{1}{2}$		····-				
	GMSB $\tilde{\mu} \rightarrow \mu \tilde{G}$	displ. μ	-	μ	0.2 TeV	<i>cτ</i> =1000 mm	4.2.2	$LQ(pair prod.) \rightarrow b\tau$	0					2	
							arXiv:1812.0783	$LQ \rightarrow t\mu$	0			••••	$\sqrt{s} = 27 Te$	eV.L = 15 ab ⁻	1
				10 ⁻¹ 1	Mass scale [TeV]			$LQ \rightarrow t\tau$	0					,	
								$H^{++}H^{} \rightarrow \tau \ell^{\pm}\ell^{\mp}\ell^{\mp} (N)$					HĽ-LHC)	
													√ <i>s</i> = 14 <i>T</i> €	<i>∋V</i> , <i>L</i> = 3 ab⁻¹	
		whe	at .	today		НС		$H^{+}H \to \tau_h \ell^+ \ell^+ \ell^+ (IH)$							
		VVIIC	a L	iuuay	I IL-"L-			$(\ell = e, \mu)$	0 2	. 4	6	8	10	12 14	arX
		aluin	OS	< 2 TeV	O(2-3	TeV)							Mas	s scale [Te	эV

what	today	HL-LHC				
gluinos	< 2 TeV	O(2-3 TeV)				
stop	< 1 TeV	O(1.5 TeV)				
EW SUSY	< 1 TeV	O(1 TeV)				
Z' / W'	< 5/6 TeV	O(6/8 TeV)				
leptoquarks	< 2 TeV	O(1.5-2 TeV)				

key message: lots of **searches**, HL-LHC opportunity for **clever** ideas...

arXiv:1812.07831

	Sect	tion
_	HL/HI	E-LHC
	6.1.1	
	6.4.4	6.4.4
		6.4.6
	6.2.2	6.2.2
	6.2.3	6.4.6
		6.4.6
	6.2.5	6.2.5
	6.2.5	6.2.4
		6.2.4
	6.2.7	
	6.2.6	
	6.2.6	
		6.4.6
	5.1.3	5.1.3
	5.1.1	5.1.1
	6.3.1	
	5.2.3	5.2.4
	5.2.1	
	5.2.1	
	5.1.1	5.1.1
	5.1.1	5.1.1
Xi	v:1812.	07831
]		

LONG-LIVED PARTICLES

Valerio Ippolito INFN Sezione di Roma

- •e.g. large-radius tracking at HLT for hadronic decays

- long-lived signatures need dedicated reconstruction to exploit higher luminosity
- •e.g. displaced muons from dark photon decays with/ without primary vertex constraints

•significant improve in reach for small $c\tau$ PRD 100 (2019) 112003, CMS DP -2022/025 (assuming no bkg)

•MTD timing used to separate LLP from v=c particle from primary vertex

WEAKLY-INTERACTING MASSIVE PARTICLES

mono-jet WIMP reach improves by ~30% in WIMP mass

detection-hard mass region

ATL-PHYS-PUB-2018-043, ATL-PHYS-PUB-2018-036

HEAVY AND LONG-LIVED PARTICLES

ATLAS Heavy Particle Searches* - 95% CL Upper Exclusion Limits

Status: July 2022

*Only a selection of the available mass limits on new states or phenomena is shown

†Small-radius (large-radius) jets are denoted by the letter j (J).

ATLAS Long-lived Particle Searches* - 95% CL Exclusion

Status: July 2022

ATLAS Preliminarv

ATL-PHYS-PUB-2022-034

ATLAS Preliminary

 $\int \mathcal{L} dt = (32.8 - 139) \text{ fb}^{-1}$

 $\sqrt{s} = 13 \text{ TeV}$ Reference 2003.11956 1907.10037 1808.03057 CERN-EP-2022-096 2011.07812 2011.07812 2201.02472 2205.06013 1811.07370 2205.06013 1710.04901 TLAS-CONF-2018-003 2203.00587 2203.01009 2107.06092 2206.12181 2206.12181 1808.03057 1811.02542 1902.03094 1902.03094 1902.03094 2204.11988 2204.11988

66

2204.11988

Overview of CMS EXO results

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The y-axis tick labels indicate the studied long-lived particle.

clickable versions here

- Phase-2 upgrade work ongoing fight pile-up and improve reconstruction and identification
- few % precision on many key processes "30%" extended new physics reach [depends on how you compute it]
- detector work goes along with new techniques machine learning is not only an high-level-analysis tool
- get ready to take the baton on stat-limited measurements

and remember it's not been unusual for ATLAS & CMS to outperform predictions...

HE-LHC

muon collider

ATLAS+CMS

FCC-ee CEPC CLIC ↓ ↓

FCC-hh

[1968; SLAC just started with 20 MeV electrons]

Backup

Valerio Ippolito INFN Sezione di Roma

HEAVY FLAVOUR DECAYS

Valerio Ippolito INFN Sezione di Roma

PID scenario	Gains in P _{tag}
MC truth	+66%
PID with $\sigma_{BTL} = 40 \text{ ps}$	+24%
PID with $\sigma_{BTL} = 70 \text{ ps}$	+14%

 tracker will improve proper time resolution (ATLAS: ~30% assuming same pT thresholds; CMS: 3x)
 MTD will help B-Physics and heavy ions on PID!
 µ trigger thresholds influence ATLAS Results

Ippolito **Valerio** INFN Sezi -0.1

2

3

Δ

5

6

B($B_s^0 \to \mu^+ \mu^-$) [10⁻⁹]

Run-1, in three acceptance scenarios

ML IN THE TRIGGER

Valerio Ippolito INFN Sezione di Roma

fast reconstruction on FPGA • fast reconstruction on GPU anomaly detection for new discoveries

LOMuon: 1 MHz and a latency of 10 μ s

ATLAS LAr & LOMuon upgrade

74

ATLAS-CONF-2021-053

Vs = 13 TeV, $m_H = 125.09$ $p_{SM} = 92\%$ Total	139 fb ⁻¹ GeV, $ y_{H} < 2.5$
$gg \rightarrow H \times B_{ZZ^*}$	SM 0-jet, $p_T^H < 10 \text{ GeV}$ 0-jet, $10 \le p_T^H < 200 \text{ GeV}$ 1-jet, $p_T^H < 60 \text{ GeV}$ 1-jet, $60 \le p_T^H < 120 \text{ GeV}$ 1-jet, $120 \le p_T^H < 200 \text{ GeV}$ ≥ 2 -jet, $m_{jj} < 350 \text{ GeV}$, $p_T^H < 60 \text{ GeV}$ ≥ 2 -jet, $m_{jj} < 350 \text{ GeV}$, $60 \le p_T^H < 120 \text{ Ge}$ ≥ 2 -jet, $m_{jj} < 350 \text{ GeV}$, $120 \le p_T^H < 200 \text{ GeV}$ ≥ 2 -jet, $350 \le m_{jj} < 700 \text{ GeV}$, $p_T^H < 200 \text{ GeV}$ ≥ 2 -jet, $m_{jj} \ge 700 \text{ GeV}$, $p_T^H < 200 \text{ GeV}$ ≥ 2 -jet, $m_{jj} \ge 700 \text{ GeV}$, $p_T^H < 200 \text{ GeV}$ $200 \le p_T^H < 300 \text{ GeV}$ $300 \le p_T^H < 450 \text{ GeV}$
$qq \rightarrow Hqq \times B_{ZZ^*}$	$ \leq 1 \text{-jet} \geq 2 \text{-jet}, \ m_{jj} < 350 \text{ GeV}, \ VH \text{ veto} \geq 2 \text{-jet}, \ m_{jj} < 350 \text{ GeV}, \ VH \text{ topo} \geq 2 \text{-jet}, \ 350 \leq m_{jj} < 700 \text{ GeV}, \ p_{T}^{H} < 200 \text{ GeV} \geq 2 \text{-jet}, \ 700 \leq m_{jj} < 1000 \text{ GeV}, \ p_{T}^{H} < 200 \text{ GeV} \geq 2 \text{-jet}, \ 1000 \leq m_{jj} < 1500 \text{ GeV}, \ p_{T}^{H} < 200 \text{ GeV} \geq 2 \text{-jet}, \ m_{jj} \geq 1500 \text{ GeV}, \ p_{T}^{H} < 200 \text{ GeV} \geq 2 \text{-jet}, \ m_{jj} \geq 350 \text{ GeV}, \ p_{T}^{H} \geq 200 \text{ GeV} $
$qq \rightarrow Hlv \times B_{ZZ^*}$	$p_{T}^{V} < 75 \text{ GeV}$ $75 \le p_{T}^{V} < 150 \text{ GeV}$ $150 \le p_{T}^{V} < 250 \text{ GeV}$ $250 \le p_{T}^{V} < 400 \text{ GeV}$ $p_{T}^{V} \ge 400 \text{ GeV}$
gg/qq→Hll × B _{ZZ*}	$p_{T}^{V} < 150 \text{ GeV}$ $150 \le p_{T}^{V} < 250 \text{ GeV}$ $250 \le p_{T}^{V} < 400 \text{ GeV}$ $p_{T}^{V} \ge 400 \text{ GeV}$
t ī H×B _{ZZ*}	$p_T^H < 60 \text{ GeV}$ $60 \le p_T^H < 120 \text{ GeV}$ $120 \le p_T^H < 200 \text{ GeV}$ $200 \le p_T^H < 300 \text{ GeV}$ $300 \le p_T^H < 450 \text{ GeV}$ $p_T^H \ge 450 \text{ GeV}$

Valerio Ippolito INFN Sezione di Roma

Parameter normalised to SM value

LIGHT-BY-LIGHT SCATTERING

78

Valerio Ippolito INFN Sezione di Ron

 $\chi \chi \rightarrow \tau \tau$

Valerio Ippolito INFN Sezione di Roma

https://cds.cern.ch/record/2805993/

79

• observed with Run-2 data • challenging at high-lumi (track veto vs pileup), but can go differential

	Run 2 ID	ITk (HL-LHC baseline)		
	$ \eta < 2.5$	$ \eta < 2.0$	$2.0 < \eta < 2.6$	$2.6 < \eta < 4.0$
Min. $p_{\rm T}$ [MeV]	500	900	400	400
Min. number of Si hits	7	9	8	7

400

<u>PLB 816 (2021) 136190, ATL-PHYS-PUB-2021-026</u>

