

The ATLAS ITk Strip Detector for the Phase-II LHC Upgrade

Andrea García Alonso On behalf of the ATLAS ITk strip community

Corfu2023 workshop April 23-29 2023 Corfu, Greece

Overview

Tracker, high luminosity upgrade and needs

The next ATLAS Inner Tracker (ITk)

The strip detector

ITk production status and schedule

Corfu2023

LHC and the ATLAS detector

A ToroidaL ApparatuS

Andrea García Alonso

Corfu2023

Tracker performance

Proton-proton collision in the current tracker

Andrea García Alonso

Proton-proton collision in the future ATLAS inner tracker, during HL-LHC

Upgrade to HL-LHC

Plot from: Technical Design Report for the ATLAS Inner Tracker Strip Detector. ATLAS-TDR-025

Particle densities and radiation levels will exceed current levels by factor 10

Instantaneous luminosity will reach $7 \times 10^{34} \text{ s}^{-1} \text{ cm}^{-2}$

Up to 200 p-p interactions per bunch crossing

Large particle fluences, unprecedentedly high levels of radiation, pile-up

Proton-proton collision in the future ATLAS inner tracker, during HL-LHC

Andrea García Alonso

Corfu2023

Upgrade needs for the phase-II upgrade

6.2m 2.1m-**Barrel semiconductor** Pixel detectors tracker Barrel transition radiation tracker End-cap transition radiation tracker End-cap semiconductor tracker

Current Inner Detector (ID)

Higher radiation tolerance \rightarrow high fluence Higher granularity \rightarrow keep low occupancy Faster response \rightarrow high track density Novel powering solutions \rightarrow power x10 more channels Reduced material in tracking volume \rightarrow keep performance Reduced pitch \rightarrow improve high p_T performance Reduced sensor cost \rightarrow cover larger area (~175 m²) Trigger rate increased from 100 kHz to 1 MHz \rightarrow bigger event size

6

Andrea García Alonso

Corfu2023

Upgrade needs for the phase-II upgrade

Higher radiation tolerance \rightarrow high fluence Higher granularity \rightarrow keep low occupancy Faster response \rightarrow high track density Novel powering solutions \rightarrow power x10 more channels Reduced material in tracking volume \rightarrow keep performance Reduced pitch \rightarrow improve high p_T performance Reduced sensor cost \rightarrow cover larger area (~175 m²) Trigger rate increased from 100 kHz to 1 MHz \rightarrow bigger event size

Upgrade: ATLAS Inner Tracker

» Nikhef

Andrea García Alonso

Corfu2023

ATLAS ITk

The *Inner Tracker* (ITk) will be a full-silicon detector with pixel (inner radii) and strip (outer radii) sensors The ITk is divided in a central region called *Barrel* and two lateral wheels called *End-caps*

Nik[hef

8

Corfu2023

ATLAS ITk: the strip detector

The ITk-Strip detector covers pseudorapidity (η) range of $|\eta| < 2.7$ About 18,000 modules and 60 M strip channels

I More info about the pixel detector in the ATLAS ITk Pixel Detector talk by Leonardo Vannoli

9

Corfu2023

ATLAS ITk: the strip detector

Cylindrical geometry made of four concentric layers

ATLAS ITk: the strip detector

Two cylinders with six disks each

Corfu2023

The strip barrel. Staves

Stave \rightarrow silicon sensors along with application-specific integrated circuits (ASICs) and high and low-voltage power controls for the sensors integrated into a barrel module

Corfu2023

The strip barrel. Staves

Andrea García Alonso

- Hybrid (readout PCB). ASICS:
 - → ATLAS Binary Readout Chips (ABC)
 - → Hybrid Controller Chips (HCC)
- Power board (power PCB) module powering + monitoring
 - → Autonomous Monitor And Control ASIC (AMAC)

DCDC converter for LV powering (ITk Strip Baseline powering scheme uses parallel powering with DC-DC converters). Sensor biasing via HVSwitch

- STAR architecture: each ABC directly connected to 1 HCC
- → Cope with 1MHz trigger rates
- → 640Mbit/s downlinks from each HCC

Barrel. Integration & installation

Cooling & Environmental: CO2 for staves, C6F14 for PP2, Dry air to -60°C DP, H&T sensors ITk Strip Cylinder 2 and 3

Stave testing YARR and ITSDAQ

SM installation & connectivity to stave. Power, cooling, opto

Stave insertion tooling

15

Summary of slides of Dave Robinson. Global Mechanics meeting ITk week 8/3/2023

Andrea García Alonso

Corfu2023

Andrea García Alonso

Corfu2023

The strip end-caps (EC). Petals

17

32 Petals per disk covering the radial range. 384 petals, 6912 modules, ~8x channels than SCT endcaps

Trapezoidal geometry

- → petals are wedge-shaped
- → 6 geometries cover the sensitive area on both sides → Manufactured in 6" silicon wafer technology. Those on R3, R4, R5 are split in 2 to cover the full area

R4

Petal \rightarrow Low-mass, high precision, double-sided, high thermal conductivity structure. Fully integrated with sensors, readout + control electronics, power components, cooling. Designed for precision mounting of microstrips, minimize material, power and services for the modules, and for end-insertion in EC disks

R0

R3

Corfu2023

The strip end-caps (EC). Petals

EC sensors:

- → single-sided micro-strip
- → n⁺-type readout implants on p-type, float-zone silicon substrate
 → n⁺-in-p technology (radiation tolerant)
- → strip: 15-60 mm long depending on radius

R1

R4

- → sensor pitch: 70-80 µm
- \rightarrow spatial resolution $\sim\!20\,\mu\text{m}$
- ightarrow time resolution \sim 3 ns

R0

R3

April 26th 2023, Corfu, Greece

Nikhef

Corfu2023

SiO₂

Andrea García Alonso

18

End-caps. Integration & installation

Integration tooling: superframes

Nik hef

End-caps. Integration & installation. Cooling

Each petal is expected to generate 68 W at nominal and max 84 W

Cooling:

2-phase CO_2 at -40°C using cooling service modules that serve 16 petals (half a wheel)

1:1 scale mock-up EC half-disk cooling system 16 copper fake petals with heater pad applied

Andrea García Alonso

C. AND CONTRACTOR

April 26th 2023, Corfu, Greece

CO₂ cooling LUCASZ plants

Nik

hef

20

End-caps. Integration & installation

Petals are mounted on the disks with 100 μ m required initial accuracy \rightarrow ATLAS-TDR

At Nikhef, the construction of the 1st end-cap structure is finished

Andrea García Alonso

21

Corfu2023

Strips. Integration & installation Radiation, T and H monitoring

→ More than 500 T sensors in ITk volume for a 9MGy radiation level

 \rightarrow 12 radiation hard optic fibre H sensors in Strip detector (LPG+2FBG)

Andrea García Alonso

22

Corfu2023

ITk schedule. Production

22,000 ITk strip sensors production started in HPK in 2020, finish by 2025

LS stave core production finish in Q1 2025, SS in Q1 2026 **Petal core production** finish by the end of 2024

Barrel and End-cap module loading will finish by mid 2026

	2024				2025				2026				2027		
Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	
	Prod	uction	LS B	us-tap	e rece	ption	and te	st							
			Pr	oduct	ion SS	Bus-	tape r	ecepti	ion an	d test					
	Prod	luction	n petal	tape	recept	tion a	nd tes	t							
E	oS Pr	oducti	on												
				l	S Sta	ve Co	re Pro	ducti	on						
	SS Stave Core Productio								tion						
				Peta	Core	Prod	uction								
Barrel Module Loading															
					Loadi	ng LS	stave	s							
										Lo	ading	SS st	taves		
			a						En	dcap	Modul	e Loa	ding		

23

Corfu2023

ITk schedule. Integration

24

Corfu2023

Building a detector for operation at the HL-LHC is challenging → Radiation hardness, increased granularity, low mass

The new tracking system for the ATLAS experiment for the HL-LHC will cope with increased particle multiplicity and radiation levels

ITk provides large acceptance, large number of points per track, high granularity and radiation hardness with minimised material budget.

The ITk Strip detector is progressing through production and integration → sensors, ASICs, modules, structures, services, global mechanics

Corfu2023

THANKS FOR YOUR ATTENTION

Andrea García Alonso agarciaa@cern.ch PhD thesis: https://cds.cern.ch/record/2790971

Nikhef

Andrea García Alonso

26

Corfu2023

BACKUP

Andrea García Alonso

Corfu2023

Upgrade to HL-LHC

In the High-Luminosity LHC, particle densities and radiation levels will exceed current levels by a factor of 10

Instantaneous luminosity will reach unprecedented values: 7×10^{34} s⁻¹ cm⁻², up to 200 p-p interactions per bunch crossing

The ATLAS detector will operate after exposure to large particle fluences

Upgrading is required to guarantee a working detector in these conditions

The current tracking detector will be completely replaced to deal with the unprecedentedly high levels of radiation and pile-up of the collider

Proton-proton collision in the future ATLAS inner tracker, during HL-LHC

z [cm]

28

Corfu2023

The strip barrel. Staves

29

Corfu2023

Strips. Integration & installation More about T and H monitoring

More than 500 T sensors in ITk volume for a 9MGy radiation level

on cooling pipe	high accuracy	ITk volume				
1012	28 (56)	ca 500				
9 MGy						
$-45 \deg C$ to $+20 \deg C$						
0.5 K	0.2 K	1 K				
1 K	0.2 K	1 K				
(-80 to -45) deg C and (+20 to +60) deg C						
	2 K					
2 K						
2 wire	4 wire	2 wire				
1012	56 (112)	ca 500				
16	16	12				
PP2						
15 m						
15 11						
0.1 kGy						
	on cooling pipe 1012 -45 o 0.5 K 1 K (-80 to -45) d 2 wire 1012 16	on cooling pipe high accuracy 1012 28 (56) 9 MGy -45 deg C to +20 deg C 0.5 K 0.2 K 1 K 0.2 K (-80 to -45) deg C and (+20 to 2 K 2 K 2 K 2 wire 4 wire 1012 56 (112) 16 16 PP2 15 m 0.1 kGy				

12 radiation hard fibre optic humidity sensors in Strip detector (LPG+2FBG)

LENGTHS 1, 2 & 3 FROM END OF STRAIGHT CONNECTOR TO START OF H-PACKAGE

30

Corfu2023

April 26th 2023, Corfu, Greece

Ni

End-caps. Integration & installation

https://indico.cern.ch/event/1176882/

At Nikhef, the construction of the 1st end-cap structure is finished

- → wheel notches, to solve issue with some petals RF-box
- → working on CF support beams installation
- → this EC will be sent to DESY for petal insertion this year

The 2nd end-cap will start to be built at Nikhef soon → petal insertion will take place at Nikhef too

When both end-caps are final, they will be shipped to CERN for assembling with the barrel

Andrea García Alonso

31

Corfu2023

DAQ activities. FELIX

- The module is an old R0 barrel without AMAC chip, with one HCC star and one ABC star
- Communication is reached, links are aligned, all dependencies for scans are working in the ITk-server
- \circ readout hybrids with

front-end chips (ABCStar) Hybrid Controller Chip (HCCStar)

 Autonomous Monitor And Control ASIC (AMAC) (for control and monitoring) ITk-server

To this common computer for flashing firmware to the FELIX card

Andrea García Alonso

Corfu2023

DAQ - The EC team

Visit to ATLAS during the EC team (Max, Jan-Hendrik, Dennis, myself) visit to SR1 in January 2023

Team working on the preparation of DAQ setups for petal reception and petal testing:

- Universität Freiburg → Dennis Sperlich
- DESY → Maximilian Caspar, Jan-Hendrik Arling, Lennart Huth
- Nikhef → Andrea García Alonso

Many thanks to the barrel SR1 team for showing and explaining their setup, as well as helping to get ours running!

33

Corfu2023

Each fiber gets split into 12, from which only 2 are not empty (in + out of the fiber from the petal). These two are connected to the bulkhead to change to the bunch of eight optic fibers that go to Genesys

34

Corfu2023

DAQ setup - Freiburg. Genesys and FELIX

35

- Successful communication with petal lpGBT through both Genesys and FELIX
- Implementing modifications for FELIX scans on petals, based on the repositories created by the SR1 team for staves
- Preparation for running scans
- Implemented first version of petal readout in FELIX → still to be tested/validated

Corfu2023

DAQ setup - DESY. Genesys and FELIX

Tested the FELIX readout with a EoS secondary board:

- o installation of FELIX packages
- \circ $\,$ routing of optical fibers
- $\circ~$ configuration of IpGBT and register readback
- \circ $\:$ successful demonstration of complete readout chain $\:$

At the moment waiting for PPB petal with R5 module from TRIUMF for real petal tests and scans:

- o testing with FELIX and ITSDAQ (parallel Genesys setup available)
- implementing and testing petal-specific changes for HCC/ABC mapping
- $\circ~$ testing of lpGBT v1 within FELIX

36

Corfu2023

DAQ setup - Nikhef Genesys

One fiber comes from the IpGBT to the 12-channel LC connector. 10 channels go empty through the LC connector till the transceiver to the FMC-QSFP. This is the same setup as the FELIX one, substituting the optic fibers bulkhead and the FELIX server with a connector and the Genesys card.

reece / Nik hef

Andrea García Alonso

Corfu2023