

Gaseous Detectors for Future Accelerators

Paolo lengo - INFN -

Workshop on Future Accelerators

APRIL 23 - APRIL 29, 2023

Outline

- Introduction: Future Colliders
- Gaseous Detectors for
 - o Upgrade of LHC experiments
 - o Lepton Colliders
 - o Electron-Ion Collider
 - o FCC-hh
- Trends and R&D on Gaseous Detectors
- Summary

Quest for New Physics

- New physics can be at low as at high mass scales,
- Naturalness would prefer scales close to the EW scale, but LHC already placed strong bounds around 1-2 TeV.

Higgs coupling measurements and direct searches will complement each other in exploring the 1-10 TeV scale and beyond.

Future Colliders

Higgs-boson factories (up to 1 TeV c.o.m. energy)

Collider	Type	\sqrt{s}	$\mathcal{P}[\%]$	$\mathcal{L}_{ ext{int}}$
			e^-/e^+	ab^{-1} /IP
HL-LHC	$\mathbf{p}\mathbf{p}$	$14 { m TeV}$		3
ILC & C^3	ee	$250~{ m GeV}$	$\pm 80/\pm 30$	2
		$350~{ m GeV}$	$\pm 80/\pm 30$	0.2
		$500~{\rm GeV}$	$\pm 80/\pm 30$	4
		$1 { m TeV}$	$\pm 80/\pm 20$	8
CLIC	ee	$380~{ m GeV}$	$\pm 80/0$	1
CEPC	ee	M_Z		50
		$2M_W$		3
		$240~{\rm GeV}$		10
		$360~{\rm GeV}$		0.5
FCC-ee	ee	M_Z		75
		$2M_W$		5
		$240~{\rm GeV}$		2.5
		$2 M_{top}$		0.8
μ -collider	$\mu\mu$	$125~{\rm GeV}$		0.02

Multi-TeV colliders (> 1 TeV c.o.m. energy)

Collider	Type	\sqrt{s}	$\mathcal{P}[\%]$	$\mathcal{L}_{ ext{int}}$	Start	Date
			. e^{-}/e^{+}	$\mathrm{ab}^{-1}/\mathrm{IP}$	Const.	Physics
HE-LHC	pp	$27 { m TeV}$		15		
FCC-hh	$\mathbf{p}\mathbf{p}$	$100 { m TeV}$		30	2063	2074
SppC	$\mathbf{p}\mathbf{p}$	75-125 TeV		10-20		2055
LHeC	ep	1.3 TeV		1		
FCC-eh		$3.5 \mathrm{TeV}$		2		
CLIC	ee	$1.5 \mathrm{TeV}$	$\pm 80/0$	2.5	2052	2058
		$3.0 \mathrm{TeV}$	$\pm 80/0$	5		
μ -collider	$\mu\mu$	3 TeV		1	2038	2045
		$10 { m TeV}$		10		

Future Colliders

#Higgs bosons (millions)

Detector requirements depend strongly by the machine parameters

- Hadron Colliders \rightarrow high pile-up, high rate
- Lepton Colliders \rightarrow cleaner environment

Stelling

From micro-patterns to large experiments, gaseous detectors are still largely exploited

Gaseous detectors at LHC

- Gaseous detectors devices are successfully used in HEP since many decades
- They are key detectors in current forefront experiments, e.g. at LHC
- Mostly as central tracker (TPC) and Muon systems

- ALICE
- .
- o CSC
- o MWPC
- o RPC
- o Timing RPC
- o GEM

- ATLAS • MDT • CSC
- o TGC, sTGC
- o RPC
- o Micromegas
- o TRT

- CMS o DT
 - o CSC
 - o RPC, iRPC
 - o GEM

LHCbMWPCGEM

Gaseous detectors at the 4 large LHC experiments, including legacy (Run1, Run2) and Phase1 upgrade (Run3)

Applications

- Gaseous detectors are used in and are being developed for many HEP applications
- Each one challenging one or more performance or construction limits

Disclaimer

- Impossible to cover all the ongoing efforts on gaseous detectors for future accelerators
- I will show a selected number of representative examples focused on detectors at Colliders
- What is not mentioned is NOT less relevant!

Experiment/ Timescale	Application Domain		Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements/ Remarks
ATLAS Muon System Upgrade: Start 2019(for 15 y)	High Energy Physics (Tracking/Triggering)	Mccomegas	Total area: 1200 er ¹ Single unit detect (2.2x1.8m ²) - 2-3 m ²	Max. rate 153dReten ³ Spatial nex./ <200jum Tame nex./ = 10 ns Ead. Hand./ = 0.5C3/m ²	Redundant tracking and triggering: Challerging coests is mechanical precision
ATLAS Muon Tagger Upgrade: Start > 2023	High Energy Physics (Tracking/triggering)	p-RC	Total area: - 2m ³	Max.rate 300691z(cm² Spatial nes.: < 300ym	
CMS Maon System Upgrade: Start > 2020	High Energy Physics (Tracking/Triggering)	CEM	Total assa: - 143 m ² Single unit detect 0.3-0.4m ²	Max.rule 10/dda/cm ² Spatial ses.r - 100µm Time res.r - 5-7 ns Rad. Hand.r - 0.5 C/cm ²	- Redundant tracking and triggering
CMS Calerimetry (BE) Upgrade Start > 2023	High energy Physics (Calorimetry)	Micromegan, CEM	Total awa: - 130 m ¹ Single unit detect 0.5m ²	Max. rate: 100 MHz/cm ² Spatial res.; - mm	Not main option; could be used with HGCAL (BE part)
ALICE Time Projection Chamber Start > 2020	Heavy-lon Physics (Tracking + dE/b)	CEM w/ TPC	Total assix - 32 m ² Single unit detect up to 0.5m ²	Max.rule 100431a/cm/ Spatial res.1 - 300pm Time res.1 - 100 ns dE/ds: 12 % (Fu85) Ead. Hand.: 50 mC/cm/	- 50 kHz Pb-Pb-sate; - Continues TPC readout - Low IBF and good energy resolution
TOTEM Rax 2009-now	High Energy/ Forward Physics (5.351/etal 5.63)	CEM (semicircular shape)	Total area: - 4 m ² Single unit detect: up to-2.03m ²	Mass rate 2018/ts/cm ³ Spatial res.2 - 120pm Time res.2 - 12 rs Rad. Hand.2 - mC/cm ³	Operation in pp. pA and AA collisions.
LHCb Muon System Bur: 2003- now	High Energy / B-flavor physics (muon triggering)	CEM	Total area = 0.6 m ² Single unit detect 20-24 cm ²	Max.rate 500 kHz(cm) Spatial sex.2 - cm Time res.2 - 3 ms Rad. Hasd.2 - C/(m)	- Redundant triggering
FCC Collider Start: > 2035	High Energy Physics (Tracking/Triggering/ Colorimetry/Muor)	GEM,THGEM Micromegas, u-PIC, InGeid	Total area: 12,000 m ² (for MPGDs around 1,000 m ²)	Max.rule 2004/14/cm/ Spatial res.: <200µm	Maintenance free for decades

Cylindrical MPGDs as	Inner Trackers for	Particle / Nuclear Physics	ð
----------------------	--------------------	----------------------------	---

RLOE-2 @ DAFNE Ray: 2014-2017	Particle Physics/ K-flavor physics (Tracking)	Cylindrical CEM	Total area: 3.5m ² 4 cylindrical layers L(longth) = 700mm R (radius) = 130, 135, 180, 205 mm	Spatial res(r phi) - 250un Spat. res.(r) - 350un	- Mat. budget 2% X0 - Operation in 0.5 T
BESEE Upgrade @ Beijing Ran: 2018-2022	Partcile Physics/ e+e- collider (Tracking)	Cylindrical GEM	3 cylindrical layers R - 20 cm	Max. rate: 10 kHz/cm ¹ Spatial rex.(xy) = 130um Spat. res.(z) = 1 mm	- Material $\leq 1.5\%$ of $X_{\rm f}$ for all layers - Operation in TT
CLASI2 @ JLAB Start: > 2017	Nuclear Physics/ Nucleon structure (tracking)	Planae (lorward) & Cylindrical (barrel) Micromegas	Total area: Forward - 0.6-m ² Barrel - 3.7 m ² 2 cylindrical layers R - 20 cm	Max, rule: - 30 MD4z Spatial res.) < 200jum Time res.(- 20 m	Low material budget (0.4% X0 - Remote electronics
ASACUSA @ CERN Rate: 2014 - new	Nuclear Physics (Tracking and vertexing of pions resulting from the p-antip-annihilation	Cylindrical Micromegas 2D	2 cylindrical layers L = 60 cm R = 85, 95 anm	Max, trigger rate: kHz Spatial res.: -200µm Time res.: - 10 ns Rad, Hard: 1 Citm ²	Large magnetic field that varies from -3 to ET in the active area
MINOS Ran: 2014-2016	Nuclear structure	TPC w/ cylindrical Micromogas	1 cylindrical layer L=30 cm, R = 10cm	Spatial res.: <5 mm FWHM Trigger rate up to ~1 KHz	- Low material budget
CMD-3 Upgrade @ HNP Start:> -20097	Particle physics (z-chamber, tracking)	Cylindrical CEM	Total areas: - 3m ² 2 cylindrical layees	Spatial res.: -100µm	
		7			0

Channel in BED mesking CEX (pash) mesking CEX (pash) mesking mesking <th>Experiment/ Timescale</th> <th>Application Domain</th> <th></th> <th>Total detector size / Single module size</th> <th>Operation Characteristics / Performance</th> <th>Special Requirements Remarks</th>	Experiment/ Timescale	Application Domain		Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements Remarks
Calarimeny for EDSD (adversery) BECM BYOLL Segle und deter. Speid area: - 1 an mediaters 34 % BYOLL Segle und deter 34 % BYOLL Se	Chamber for ILD.		CEM (pab)	Single unit detect: - 400 cm² (pads)	Spatial res.: <150µm Time res.: < 15 ros dE/ds: 5 % (Fe55)	dpip < 9*10-11/Ge
			THCEM RPWELL	Single unit detect	Spatial res.: - 1cm Time res.: - 300 rs	Jet Energy resolution: 3-4 % Power-publing, sel triggering readout
PFA Calorimeter			×	Particle		ry (ILD/SiD):
	Y		SED Concep	ECAL		HCAL

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics/ Performance	Special Requirements Remarks
COMPASS @ CERN Ran: 2002 - new	Hadron Physics (Tracking)	CEM Micromogan w/ CEM preampl.	Total area: 2.6 m ³ Single unit detect: 0.31x0.31 m ³ Total area: - 2 m ³ Single unit detect: 0.4x0.4 m ³	Mascrate: 1977 Hz (~100kd Leinm ³ .) Spatial res.(~75-100 µm (strip), ~120µm (pixel) Time res.(~8 rs Rad. Hardz. 2500 mC/cm ²	Required beam tracking (piselized central/beam area
KEDR © BENP Ban: 2000-now	Particle Physics (Tracking)	CEM	Total area: -0.1 m ²	Max. rate:1 MHz/mm ² Spatial res.: -70µm	
SBS in Hall A @ JLAB Start > 2017	Nuclear Physics (Tracking) nucleon.form factors/struct.	CEM	Total area: 14 m ³ Single unit detect. 0.6x0.5m ³	Mas. rate: 000 MJ (a)(m ² Spatial res.; -70µm Time res.; - 15 m Rad. Hard;: 0.3-1 M/y/y.	
pRed in Hall B @ JLAB Start 2017	Nuclear Physics (Tracking) procision meas. of proton radius	CEM	Total area: 1.5m ² Single unit detect. 1.250.6 m2	Max. rate:5303a/cm ² Spatial res.: -70µm Time res.: - 15 na Rad. Hard.: 10360phy.	
SoLID in Hall An JLAB Start: -> 2020	Nuclear Physics (Tracking)	CEM	Total area: 40m ² Single unit detect. 1.250.6 m2	Max, rate 600 kHalom ¹ Spatial res.: ~100µm Time res.: ~15 ns Rad. Hard.: 0.8-1 kGpty.	
E42 and E45 ofPARC Start: -2020	Hadron Physics (Tracking)	TPC w/ GEM, gating grid	Total area: 0.26m ² 0.52m(diameter) x0.5m(deith longth)	Max. rate:10* kHz/cm ² Spatial res.: 0.2-0.4 mm	Gating.grid eperation - IkHz
ACTAR TPC Start: -2020 for 10 y.	Nuclear physics Nuclear structure Reaction processes	TPC w/ Micromegan (amp.gap-220 jam)	2 detectors: 29°25 cm2 and 12.5°50cm2	Counting rate < 10°4 muclei but higher if some beam marks are used.	Work with variou gas (He mixture, iC4H10, D2)

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements/ Remarks
COMPASS RICH UPGRADE Start > 2016	Hadron Physics (RICH - detection of single VUV photons)	Hybrid (THCEM + Cil and MM)	Total area: ~ 1.4 m ³ Single unit detect: ~ 0.6 x 0.6 m ³	Max.rate:200Hz/cm ² Spatial res.: <- 2.5 mm Time res.: <- 10 rs	Production of large area THCEM of sufficient quality
PHENIX HBD Ray: 2009-2010	Nuclear Physics (RICH - eft separation)	GEM-Cil detectors	Total area: - 1.2 m ² Single unit detect - 0.3 x 0.3 m ²	Max, rate: low Spatial res.: - 5 mm (n) Single el. eff.: - 90 %	Single el. ell. depend from hadron rejectio factor
SPHENEX Rax: 2021-2023	Heavy Ions Physics (tracking)	TPC w/GEM readout	Total area: - 3 m ²	Multiplicity: dNcb/dy - 600 Spatial res.: - 100 um (rg)	Runs with Heavy Io and comparison to p operation
Electron-don Collider (EIC) Start > 2025	Hadron Physics (tracking, RICH)	TPC w/GEM readout + Ownerkov	Total area: - 3 m ²	Spatial res.: - 100 um (r8) Luminosity (e-p): 10 ^m	Low material budget
		RICH with GEM readout	Total area: - 10 m ¹	Spatial res.: - lew mm	High single electron efficiency

MPGD-based <u>Neutron Detectors</u> MPGD-based <u>Neutron Detectors</u> MPGD capled to n-converters MPGD capled to n-converters Neutron band dispositor								
Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size)	Operation Characteristics/ Performance	Special Requirements / Remarks			
ESS NMX: Neutron Macromolecular Crystallography Start: > 2020(for 10 y.)	Newtron scattering Macromolecular Crystallography	GEM w/ Gd.converter	Total area: - 1 m ² Single unit detect: 60x60 cm ²	Max.ente: 100 kHz/mm ³ Spatial res.: -500µm Time.res.: - 10 us n. eff: - 20% efficient - y rejection of 100	Localise the secondary particle from neutron correction in Gd with < 500um precision			
ESS LOKI- SANS: Senall Angle Neutron Scattering (Low Q) Start: > 2020(for 10 y)	Neutron scattering: Small Angle	GEM w/ borated cathode	Total area: - 1 m ² Single unit detect: 33x40 cm ² trapezoid	Max.rate: 403512/mm ² Spatial res.: ~4 mm Time res.: ~100 us n. ~41. >40% (at 3~4 Å) ~ y rejection of 10%?	Measure TOP of neutro interaction in a 3D borated cathode			
SPIDER ITTR NIN PROTOTYPE Start: - 2017(for 10 y.)	CNESM diagnostic Characterization of neutral deuterium beam for ITER plasma heating using neutron-emission	CEMs w/ Al-conserter (Directionality- angular) capability)	Single unit detect: 20x35 cm ²	Max.nate: 100 kHz/teren ² Spatial res.: - 10 mm Time res.: - 10 ms rc-eff: >10°-5 y rejection.of 10°-7	Measurement of the n- emission intensity and composition to correct deuterium beam parameters			
n_TOF beam monitoring/ beam profiler Ran: 2008-new	Neutron Beam Monitors	MicroMegas µbulk and GEM w/ converters	Total area: - 100cm ²	Max.eute:10kHz Spatial res.: 2 - 300µm Time res.: - 5 ms Rad. Hard.: no				

MPGD Technologies for Dark Matter Detection

	Application Domain		Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements/ Remarks
DARWIN (multi-ton 1 dual-phase LXe TPC) Start: >2020s	Dark Matter Detection	THGEM-based GPMT	Total area: -30m ² Single unit detect. -20:x20 cm ²	Max.nate 1003Er/cm ³ Spatial res.2 - 1 cm Time res.2 - few ns Rad, Hard.2 ro	Operation at -180K, radiopure materials, dark court rate -1 Hz/cm ²
	Astroparticle physics Neutrinoless double beta decay	TPC w/ Micromegas µbulk	Total area: 1.5 m ²	Energy Res.: - 1-3% @ 2 MeV Spatial res.: - 1 mm	High radiopurity High-pressure (10b Xe)
NEWAGE# Kamioka Ran: 2004-now	Dark Matter Detection	TPC w/ GEM-µPK	Single unit det. - 30x30x41(cm ²)	Angular resolution: 47' 0 NikeV	
	AstroParticle Physics: Asions, Dark Energy/ Matter, Chameleons detection	Micromegas phulk and InCeid (coupled to X- say focusing device)	Total area: 3 MM pbulks of 7x 7cm ³ Total area: 1 InGeid of 2cm ³	Spatial res: - 100µm Emergy Res: 14% (TWEM) # theV Low big, levels (2.7 keV): µMM, 10-6 cu = 1keV-1cm-2 InGelt 10-5 cu = 1keV-1cm-2	High radioparity, good separation of tracklike big, from X-rays
	AsteoParticle Physics Asions, Dark Energy/ Mamer, Charwleces detection	Micromegas phulk, CCD, InGrid (+ X- ray focusing device)	Total area: 8 phulks of 7 s 7cm2	Energy Res 12% (FWEM) # theV Low bkg, Lovels (1-7 keV) ubulk: 10-7cts s-HeV-1cm-2	High radiopurity, good separation of tracklike bkg, from X-rays

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size		Special Requirements Remarks
T2K⊕Japan Start: 2009 - now	Neutrino physics (Tracking)	TPC w/ Micromegas	Total area: - 9 m ³ Single unit dence: 0.36x0.34m ³ -0.1m ³		The first large TPV using MPCD
SHIP © CERN Start 2025-2035	Tau Neutrino Physics (Tracking)	Micromegan, GEM, mRWILL	Total area: - 26 m ² Single unit detect: 2 x 1 m ² - 2m ²	Spatial res.; < 150 µm	Provide time stam of the neutrino interaction in brick
LENO-DEMO (WA105 e CERN): Start > 2016	Neutrino physics (Tracking= Calorimetry)	LAr TPC w/ THGEM double phase readout	Total assa: 3 m ² (WA105-3x1x1) 36 m ² (WA105-6utodi) Single unit detect. (0.5x0.5 m2) -0.25 m ²	Max. sale: 150 Hatmi	Detector is above ground (max. rate determined by my flux for calibration
DUNE Dual Phase Far Detector Start: > 2023?		LAr TPC w/ THCEM double phase readout	Total area: 720 m ¹ Single unit detect. (0.5s0.5 m2) - 0.25 m ¹	Spatial res.: 1 mm	Detector is underground (ran neutrino (lux)
MPGD	Technologie	es for <u>X-R</u>	ay Detection	and y-Ray Po	larimetry
Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation characteristics / Performance	Special Requireme Remarks
KSTAR @ Korea Start: 2013	Xray Plasma Monitor for Tokamak	CEM	Total area: 100 cm ³	Spat. res.: - 8x5 mm*2 2 ms frames; 800 frames/sec	

MPGD Technologies for Neutrino Physic

KSTAR @ Korea Start: 2013	Xray Plasma Monitor for Tokamak	GEMPTX	Total area: 100 cm ³ Total area: 10-20 cm ³	Spal, res.: - 8x8 mm*2 2 ms frames; 500 frames/wc Spal, res.: - 30x50 µm*2 1 ms frames;5 frames/sec	
PRAXy5 Future Satellite Mission (US-Japan): Start 2020 - for 2years	Astrophysics (X-ray polarimeter for relativistic astrophysical X-rays	TPC w/ GEM	Total area: 400 cm ³ Single unit detect. (8 x 50cm ³) -400cm ³	Max.nate: ~1 kps Spatial res.: - 100 um Time res.: - few rts Rad. Hard.: 1000 kead	Reliability for space mission under severe thermal and vibration conditions
HAEPO Balloon start >2017?	Astroparticle physics Gamma-ray polarimeny (Tracking/Triggering)	Mcromegas + CEM	Total assa: 30x30cm2 (1 cubic TPC module) Future: 4x4x4 = 64 HARPO size mod.	Max.rate = 2013/12 Spatial res.: < 500 um Time res.: = 30 ns samp.	ACET development for balloon & self triggered
SMILE-II: Rur: 2013-now	Astro Physics (Gamma-ray imaging)	GEM+µPIC (TPC+ Scientillators)	Total area: 30 x 30 x 30 cm ³	Point Spread Function for gamma-ray: 1'	
ETCC camera Run: 2012-2014	Enviconmental gamma-ray monitoring (Gamma-ray imaging)	GEM-µPIC (TPC+ Scimilators)	Total area: 10x30x30-cm ⁹	Point Spread Function for gamma-ray. 17	
To C					

(Out-of-date) list of MPGD application M. Titov, 5th MPGD conference

LHC experiments upgrade

P. IENGO - Gaseous Detectors for Future Colliders

High Luminosity LHC

HL-LHC

Fig. 7. Peak luminosity (red dots) and integrated luminosity (blue line) vs time till 2035.

The development of gaseous detectors for HiLumi LHC is driving the effort for (most although not all) technologies proposed for experiments at future colliders

All challenges already here:

- High rate
- High radiation
- Pileup

High rate

- Increase in luminosity \rightarrow rate increase
- Extend the coverage to high eta region \rightarrow rate increase

LHCb M Stations

To cope with rates up to1 MHz/cm² Micro Pattern Gaseous Detectors are becoming a popular choice Wire chambers, drift tubes and RPC remain a valid option for rates up to O(10-100 kHz/cm²)

High radiation

Pileup

ATLAS simulated tt event at 14 TeV at HL-LHC - 200 pileup interaction in the same BC - 2000 reconstructed tracks Pileup impacts track identification and reconstruction, adds extra energy to the calorimeter, hide "isolated" leptons, impact trigger and offline reconstruction...

Detector challenges:

- High space granularity
- High time granularity \rightarrow 4d reconstruction
- Low material budget (central regions)

GATED OPERATION IN RUN 1 & RUN 2

Multi Wire Proportional Chamber readout

- A pulsed gating grid is used to prevent back-drifting ions from the amplification stage to distort the drift field (ion backflow (IBF) suppression ~10⁻⁵)
- 100 µs electron drift time + 200/400 µs gate closed (Ne/Ar) to minimize ion backflow and drift-field distortions
- 300/500 µs in total limits the maximal readout rate to few kHz (in pp)
- Limitation of readout electronics: ~kHz in Run 2 (2017 pp: 2040 Hz)

Gated operation used in Run1 & 2 becomes inacceptable after Run3 (current run) and beyond

Mandatory to identify a stable amplification stage with reduced IBF and good energy resolution
 → move to non-gated, continuous operation

- IROC OROC OROC OROC 3
- ALICE: ungated GEM-based TPC
- Cascade of 4 GEM foils → reduction of Ion backflow from ~5% (3 GEM) to <1%
- Continuous operation at >50 kHz Pb-Pb
- PID with dE/dx: fine tuning of geometry and HV sharing between foils; Energy resolution ~5-8 %
- TPC volume: ~90 m³; Active GEM area: ~32 m²
- B=0.5 T; Gas: Ne:CO₂:N₂ (90:10:5)

CONTINUOUS OPERATION IN RUN 3 AND BEYOND

Drift time in TPC

- Maximum drift time of electrons in the TPC: ~100 μs
- Average event spacing: ~20 μs
- Event pileup: 5 on average
- Triggered operation not efficient
- Minimize IBF without the use of a gating grid

ALICE PERFORMANCE IN 13.6 TeV pp

CMS GEM

CMS GEM

- GEM End-cap: Project on several phases
- Slice test' → Run2
- GE1/1 → Inner endcap Muon station → Phase1
- GE2/2 \rightarrow Second endcap Muon station \rightarrow Phase 2
- ME0 \rightarrow High rapidity region ($|\eta|=2.03-2.8$) \rightarrow Phase 2
- Gas: Ar:CO₂ 70:30

- Demonstrator: 4 GEM installed and successfully operated in CMS in Run2
- GE1/1 2 wheel each of
 - 72 detectors \rightarrow 36 'super-chambers
 - o Total active surface ~50 m²

CMS GEM

- GE2/2: 2 end-caps each of
- 36 chambers on 2 layers
- 4 modules/chamber \rightarrow 288 modules
- Total active surface ~110 m²

 \rightarrow

 \rightarrow

Double segmented foils 1 and 2 Discharge probability suppression Good efficiency reached

- ME0: 2 end-caps each of
- 6 modules x 18 stations \rightarrow 216 modules
- Module area 0.296 m² \rightarrow total active area: 64 m²

Voltage-drop compensation: Promising results for triple GEM working with stable gain at particle flux of O(MHz/sector)

GEM top

GEM botton

CMS Preliminary

ATLAS

ATLAS New Small Wheel

Run1 & 2: Level 1 End-Cap trigger, dominated by fake trigger events (type B e C)

- Complementary technologies are used for triggering and for track reconstruction.
 - o sTGC: good bunch crossing assignment with high radial resolution and rough ϕ resolution from pads
 - o Micromegas: good offline radial resolution and a good ϕ coordinate due to its stereo strips
 - 1280 m² active surface for each technology

ATLAS sTGC

- Small Strips Thin Gap Chambers (sTGC)
 - Two cathode boards
 - Gold-Tungsten wires between the cathode boards
 - 380k channels
 - 192 detectors
 - CO2+n-Penthane

ATLAS Micromegas

111

- ATLAS Micromegas is the largest MPGD-based system ever conceived and built
- 2.1 M readout channels
- 128 detectors
- Gas: Ar:CO₂ 93:7 \rightarrow Ar:CO₂:iC₄H₁₀ 93:5:2

 The uTPC reconstruction technique allows for precise tracking at large impact angle

Fig. 1. Sketch of the detector principle (not to scale), illustrating the resistive protection scheme; (left) view along the strip direction, (right) side view, orthogonal to the strip direction.

The Micromegas R&D for ATLAS pioneered the development of resistive MPGD

Micromegas boards fully produced in industry

• ~2500 foils produced → big technological challenge

ATLAS NSW

ATLAS Phase2 BI - sMDT

ATLAS Phase2 BI - iRPC

Detecting Strips

Resistiv

Resistive

HV AI foil

Improved RPC:

- Reduced electrode thickness 1.4 mm
- Resistivity 5x10¹⁰ \bigcirc
- Gas gap 1 mm / chambers with 3 layers \bigcirc
- Rate capability or longevity x10
- Tme resolution <400 ps

Transfer amplification from gas to FE electronics \rightarrow new FE with new chip, threshold as low as 1 fC

Silicon BJT for the discrete component preamplifier Full custom ASIC in IHP BiCMOS technology

iRPC also used in CMS for Phase2 upgrade: extension of the RPC coverage to 1.9<|eta|<2.4

LHCb Run5 Muon system

Figure 4.15: (a) Side view of the LHCb muon system for the Phase-I Upgrade. (b) Station layout with the four regions R1–R4 indicated.

uRWELL for LHCb

Lepton Colliders

Lepton colliders

- In Lepton Colliders gaseous detectors are still the optimal choice for inner trackers → low material budget
- The example is the IDEA detector concept
 - Proposed for large lepton colliders (FCC-ee, CEPC)

Tracker:

- Si pixel vertex detector
- Drift Chamber (DCH)
- Si wrappers (strips)
- U-RWELL for pre-shower
 detector and Muon system
 inside the magnet retour yoke
- Superconducting solenoid 2T,30cm,~0.7X0 ,0.16λ@90°

Physics process	Measurands	Detector subsystem	Performance requirement
$ZH, Z \to e^+e^-, \mu^+\mu^-$ $H \to \mu^+\mu^-$	$ \begin{array}{c} m_H, \sigma(ZH) \\ \text{BR}(H \to \mu^+ \mu^-) \end{array} $	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$
$H \to b \bar{b}/c \bar{c}/gg$	$BR(H \to b\bar{b}/c\bar{c}/gg)$	Vertex	$\begin{split} \sigma_{r\phi} &= \\ 5 \oplus \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu\text{m}) \end{split}$
$H \to q\bar{q}, WW^*, ZZ^*$	$\begin{array}{c} {\rm BR}(H \rightarrow q \bar{q}, \\ WW^*, ZZ^*) \end{array}$	ECAL HCAL	$\sigma_E^{\text{jet}}/E = 3 \sim 4\%$ at 100 GeV
$H \to \gamma \gamma$	$\mathrm{BR}(H\to\gamma\gamma)$	ECAL	$\frac{\Delta E/E}{\frac{0.20}{\sqrt{E(\text{GeV})}} \oplus 0.01}$

IDEA Drit CHhamber

o Developed from previous DCH: MEG II

Compromise between granularity and transparency

Ο

_

_

_

- High momentum resolution
- Ultra light detector
- Assisted by Si wrappers
- Dimensions: L=400mm ; R=35÷200cm
- Total thickness: 1.6% of X0 at 90°
- 112 layers for each 15° azimuthal sector

Particle separation vs cluster counting efficiency (2 m track)

Particle ID with cluster counting

- Tracks with rather low pT (<50 GeV)
- Gas: He:iC4H10 (09:10) \rightarrow ionisation signals few ns; drift time 350 ns
- Fast redout (GHz sampling)
- PID with dNcl/dx expected to be better than dE/dx except for 0.75<p<1.05 (recoverable with ToF)

MEG-II DCH

TPC at electron colliders

- A TPC ideally combines dE/dx measurement and low material budget, allowing a continuous measurement of the tracks. A strong magnetic field aligned with the TPC drift field limits diffusion and allows charged track momentum measurement.
- Together with silicon (vertex) detectors, it provides excellent performance in resolution
- TPC is the main tracker for the ILD detector concept. At ILC, it profits from a beam time structure allowing power switching and gating.

First development of large scale GridPix detector

~10 m2 detector surface. Three option under study: Micromegas / GEM / GridPix

TPC at electron colliders

- Baseline gas (same as T2K): Ar:CF4:Isobutane 95:3:2
 → excellent dE/dx
- For cluster counting He is needed (larger cluster separation)

- o Running a TPC @ Z pole @ 2. 1036 cm-2 s-1 is not trivial
- The ion backflow is an issue
- The positive ions of 22 000 Zs will accumulate in the TPC volume
- Continuous DAQ and tracking needed for real-time corrections for space point distortions
- The experience from ALICE at LHC (50 kHz Pb-Pb collisions) will be crucial

TPC for CEPC: promising results in IBF suppression for hybrid GEM+MM technology (tested by ALICE in the past)

Muon Collider

 \circ

 \circ

 \cap

Ο

Efficiency

0.8

0.6

0.4

0.2

T F F F F F F F F

10

I I I I I I

p_ (GeV)

10²

- Very high energy muon momentum reconstruction in 10 TeV Ο collisions remain challenging
- Future R&D directions: better timing and resolution: Ο GEM, Micromegas, mRPC, PicoSec...

Electron-Ion Collider

EIC Trackers

- 3 proto-colloborations: ATHENA, CORE, ECCE \rightarrow ATHENA as example
- Hermetic detector, low mass inner tracking
- Moderate radiation hardness requirements
- Excellent PID (pi/K/p)
 - o forward: up to 50 GeV/c
 - o central: up to 8 GeV/c
 - o backward: up to 7 GeV/c

- Outer barrel tracker uses cylindrical Micromegas
- o Endcap tracker uses planar u-RWELL
- Envision capacitive-sharing pad readout: Vertical stack of pads layers → reduce readout channels
- GEM or uRWELL proposed as forward tracker in CORE as well

CORE EIC GEM prototype U-V srtrip redout

Gaseous Detectors at FCC-hh

Q (2.5)

Harristan Sector

Outor Street

Shielding

- O No standalone muon performance required
 → Muon system providing Muon ID and trigger capability
- O Requirement for combined muon momentum resolution: 10% for momenta of 20 TeV/c at $\eta = 0$.
- O In forward muon system, standalone momentum measurement and triggering can only be achieved when using a forward dipole (like ALICE, LHCb)

- Gas detectors like the ones employed for HL-LHC are good candidates for the muon systems
- Different choices for Barrel&Outer EC and Inner EC
- Dedicated R&D needed to exploit recent trends in frontier gaseous detectors (sub-ns time res., O(1)MHz/cm2 rate capability, longevity, eco-friendly gas etc.

(Selected) Recent trends and R&D on gaseous detectors

RPC

Eco-friendly gas

RPC technology continuously improved, aiming at more and more challenging applications

- In HEP, typically operated in avalanche mode with the standard gas mixture: CH2FCF3 (> 90%)/ C4H10 / SF
- Need to investigate more eco-frindly gas: environmental ans cost reasons

Tested several options. Promising results with: HFO+CO2 replacing R134a (GWP reduced by 80%)

ECO2 = $CO_2/C_3H_2F_4/i-C_4H_{10}/SF_6=(60/35/4/1)^6 \frac{1}{2}$ and ECO3 = $CO_2/C_3H_2F_4/i-C_4H_{10}/SF_6=(69/25/5/1)^6 \frac{1}{2}$ and

Search for optimal gas continuing in conjunction with development of new RPC for a new 'green and standard' mixture (larger CO2 content under investigation too)

GasGWP* values
100-year time horizon CO_2 1 CH_2FCF_3 1300 SF_6 23500

Similar performance but higher working point

System aspect also relevant to reduce impact (and for cost saving): recirculation and recuperation largely used in LHC experiment are becoming more and more efficienct

Cylindrical RPC

• Resistive Cylindrical Channel (RCC)

- Simple construction and solid mechanics, allowing gas pressurization : Increase the gas target density \rightarrow more primaries \rightarrow light eco-friendly CO2 based gas mixtures
- Double gap: Tracking capability Improvement in time resolution and efficiency

MPGD

MPGD as RPC

- The resistive coating of PCB allows to develop RPC-like structures for time resolution comparable to RPC (~ ns)
- Main difference with RPC: surface vs planar resistivity
 - o Resistive pattern possible
 - Tuning of resistivity
- Some activities ongoing to explore the potential
- sRPC: surface RPC
 - o Standard DLC on substrate $\frac{3}{2}$
 - $\circ \sigma_t = 1 \text{ ns reached}$

- RSD: Resistive Strip Detector
 - First prototype with screen-printed resistive strips
 - o Good resistivity uniformity reached
 - o Promising performance

P. IENGO - Gaseous Detectors for Future Colliders

Resistive MPGD for high rate: Small-PAD Micromegas

INFŃ

- High-rate stable operation (>10 MHz/cm2) requires effective spark quenching mechanism \rightarrow resistive material
- But resistivity limits the max attainable rate \rightarrow charge evacuation path and voltage drop \rightarrow fast evacuation path
- Low occupancy is required too \rightarrow high granularity readout electrodes (pixel/pad readout; integrated electronics)

Keep sufficient local surface resistivity to quench discharges with low resistance to ground

Timing MPGD

Fast Timing MPGD

106

0.66

Picosec

- Pushing MPGD to ps time resolution
- Operation principle:
 - (Cherenkov radiator + Photocathode) to get rid of intrinsic fluctuation in primary ionisation + Micromegas amplification and readout stage
- Nominal configuration:
 - Radiator: 3 mm MgF₂ + 5.5 nm Cr substrate; Photocathode:18 nm CsI
 - \circ Bulk MicroMegas 200 μm drift + 128 μm amplification gap
 - Gas: Ne:C₂H₆:CF₄ (80:10:10) → gain of few 10^{5} - 10^{6}
- Other configurations tested:
 - o Different bulk MM: Thin Mesh, Resistive, Floating Pads
 - o Different Photo Cathodes: CsI , Cr, Al, DLC, B₄C, B, doped DLC

Single pad PICOSEC detector

Multi-pad PICOSEC: 19 hex pads ø 1cm

First prototype with single small (ø 1cm) readout plane

Larger prototypes built and tested

10x10 pad PICOSEC module with 1

Photocathode optimisation studies ongoing DLC is rad hard and allowed to reach σ_t < 50 ps

Gaseous detector longevity

- Ageing phenomena in gaseous detectors can be the subject of a dedicated conference (was in the past; the 3rd edition will be this fall). Here only few hints
 - Main source of classical ageing:
 - Degradation of material with integrated charge / time
 - Chemical effects of gas compounds
 - Ageing is however a subtle phenomena, depending on many parameters (gas mixture, materials, operating conditions, rates...) and detector ageing must be studied for each specific application
 - Example: relevance of controlling the operation parameters (e.g. gas flow) in GEM. LHCb test
 - Ageing test must be long-term: acceleration might mitigate the aging effect (well known from wire chambers)

Gaseous detector longevity

- Ageing behavior of traditional gaseous detectors (wire chambers, RPC) well known
- Bakelite RPC
 - Surface degradation mainly due to F- radicals combining in HF
 → increase of dark current.
 Mitigation: reduce F-based gas components; increase gas flow
 - Increase of bulk resistivity → increase in working point Mitigation → restore rH value. Effect can be fully controlled
- Wire chambers
 - Deposits (whiskers) on the wire surface → distortion of pulse height spectra, gain loss, noise rate Mitigation: no hydrocarbons, no silicon material
 Seconclusions on Gases Seconclusion 250 methods by the trusted for more than [11,18,21,46] 0.01-0.05 C/cm. The Notice of The Workshop is that Noble should not the trusted for more than [11,18,21,46] 0.01-0.05 C/cm. The Notice of The Workshop is that the times held of the trust of the

Typical aging phenomena on wire chambers

Gaseous detector longevity

- MPGD better behavior compared with wire chambers
- Accelerated aging tests have been conducted on GEM, Micromegas and other MPGD with excellent results
 - New materials (resistive coating) and challenging detector operations (high rates, large integrated charge) calls for dedicated studies
 - Effects of hydrocarbons must be re-evaluated for the specific application

Etching effect on Triple-GEM operated with CF4based mixture at low flow

Aging in ALICE GEM prototype operated with hydrocarbons (CH4) in Ar 95% mixture. Aging stops when CH4 is replaced with CO2

Resistive Micromegas (ATLAS-like): 3-years exposure at GIF++ Total collected charge \sim 0.3 C/cm^2 \rightarrow No sign of aging in Ar:CO2

Test with 2% of iC4H10. Results from accelerated test (up to >1C/cm2) and from longterm test at GIF++ : no aging observed

28.04.23

Summary

- Gaseous detectors are still playing a central role for detector systems in present and future experiments, in spite of their age!
 - o Unreplaceable to equip large system like Muon detectors
 - o Low material budget for central trackers
 - o TPC
- Community very active in developing new structures and proposing new ideas
 - o Wire chambers and tubes widely used
 - RPC moving to high rates and eco-friendly gas
 - o MPGD explosion boosted by resistive material

Gaseous detectors have a glorious past, a solid present and a brillant future!

Additional Material

Inner Tracker with MPGD

GEM Inner tracker

- MPGD suitable for Inner Tracker for their intrinsic light structure → low material budget
 - IT exploit mechanical flexibility of MPGD \rightarrow cylindrical shape
 - BESIII
 - Gas: Ar:iC₄H₁₀ (90:10)

X0~0.3%

Performance degradation with time of wire-based BES IT (aging)

KLOE2

- First development of cylindrical GEM
- Gas: Ar:iC₄H₁₀ (90:10)

Cylindrical Micromegas

- CLAS12 @ JLAB
- Nuclear Physics/Hadron Spettroscopy/Deep Processes
- B=5 T magnet
- 11 GeV e- beam
- Two Micromegas-based systems
- Barrel → cylindrical / A = 2.9 m2 / 18 units / Gas: Ar:iC₄H₁₀ (90:10)
- Forward →
- Planar / A = 0.6 m2 / 6 units / Gas: $Ar:iC_4H_{10}:CF_4$ (80:10:10)
- 6 layers / X0 ~0.33/layer

Curved MM bulk

Drift electrode integration

- ASACUSA @ CERN
 - Antimatter
 - B=3-4 T magnet
 - 2 Micromegas layers 413 mm long
 - $r_1 = 78.5 \text{ mm } r_2 = 88.5 \text{ mm}$
 - Gas: Ar:iC₄H₁₀ (90:10)

RICH & photon detection with MPGD

Thick **GEM**

4.5mm

38.5mm

4 mm

3 mm

5 mm

20

- THGEM: Same principle as GEM but with thick material (FR4)
 - o PCB thickness ~ 0.4-3 mm
 - Hole drilled diameter ~ 0.2-1 mm
 - o Pitch ~ 0.5-5 mm
- Industrial production for large size
- Mechanically self-supporting
- Robust
- Successfully used in COMPASS RICH-1 for singlephoton detection
 - \circ Hybrid configuration: THGEM+Micormegas; A = 1.4 m²
 - o eff. gain ~ 15000, gain stability ~5%
 - \circ single γ angular res. 1.8 mrad
 - Gas: Ar:CH₄ 50:50 → optimal photoelectron extraction from CsI to gas
 - IBF = 3%

Resistive MPGD

Resistive MPGD

- The success of resistive Micromegas induced the development of many new resistive MPGD structures and the optimisation of the resistive coating
- During the R&D for ATLAS Micromegas to different coating techniques have been tested:

- Sputtering techniques uses carbon in 'Diamond Like', amorphous structure → carbon particles of molecular sizes
- Fine structure with given resistivity attainable

Random mixture of sp3 (diamond) and sp2 (graphite) carbon creates conductive paths of molecular size Schematization of sputtering technique Exposure time → Thickness of deposited film → Final resistivity

CATHODE SPUTTERING TARGET O

PLASMA

Carbon is sputtered uniformly on the substarte. The lift-off method allows to create the desired pattern

- Diamond Like Carbon (DLC) coatings: stable and mechanically robust material
- Offers new possibilities to develop new detector structures

DLC GEM and THGEM

- Resistive DLC is being applied to several GEM and GEM-like detectors for different goals
- Maximum surface of GEM foil is limited to ~100 cm² to limit discharge energy
- Foils are thus segmented (O(100 µm) between sections) with the effect of a local field distortion and ~% efficiency loss

Promising results have been obtained with segmentation of GEM manufactured on DLC polymer foils

Resistive GEM under development

$\mu\text{-RWELL}$ and $\mu\text{-PIC}$

NOT IN SCALE

6000g

50000

4000

3000

2000

1000

Top copper layer

Resistive foil (p)

Pre-preg -

Pads

kapton-

- μ-RWELL: full DLC-based detector with 3 elements:
 - WELL patterned Kapton foil acting as amplification stage (GEM-like)
 - o resistive DLC layer
 - o standard readout PCB
- Single layer device with good stability

Comparison of single GEM and uRWELL

Single GEM: discharges of ~500 nA @ G~1k uRWELL: discharges of ~50 nA @ G~5k

Limitation for large area: the signal amplitude depends on the particle incident point: electrons are evacuated on the side of the structure \rightarrow limited rate capability - O(10 kHz/cm²)

$\mu\text{-PIC}$: radial electric field. Now resistive variant

Resistive MPGD for high rate

- High-rate stable operation (>10 MHz/cm²) requires effective spark quenching mechanism \rightarrow resistive material
- But resistivity limits the max attainable rate \rightarrow charge evacuation path and voltage drop \rightarrow fast evacuation path
- Low occupancy is required too \rightarrow high granularity readout electrodes (pixel/pad readout; integrated electronics) Keep sufficient local surface resistivity to guench discharges with low resistance to ground

Double DLC μ RWELL: conductive vias every few mm

28.04.23

DI C

Optical Readout

Optical readout

- During the multiplication process, photons are produced along with e- \rightarrow light can be detected instead of (or together with) an electric signal
- Take advantage of the state-of-the art imaging sensors and readout ASICS
- Image immediately available, no need for reconstruction
- Three declinations:
 - Pure optical readout with imaging sensors 0
 - Hybrid readout (optical+electronic) 0
 - Pixellated readout with ASICs 0

(coupling) scintillation) intensifiers. (tapered) fibers. Microlenses

Detector

(amplification and

High gain MPGDs

Imaging sensor

(camera)

CCD, CMOS, ASICs

Optics

Micromegas on Timepix ASIC

- Bump-bond pads used for charge collection
- CMOS-ASIC designed by the Medipix collaboration
- GridPix based on Timepix 3:
- 256×256 pixels with 55×55 µm² per pixel
- Charge (ToT) and time (ToA) information with 1.56ns time resolution

QUAD module with fill factor of 68.9%

28.04.23

P IENGO - Gaseous Detectors for Euture Colliders

Optical TPC

- Optically readout TPC have a long history
- Modern imaging techniques allow to exploit OTPC
- Detailed 2D projection \rightarrow auxiliary timing for 3D reconstruction is needed
- Proposed in several experiments, particularly suited for DM searches
- The CYGNO Experiment
- Volume 1 m³
- Gas: He:CF₄ (60:40) at P atm
- 3x3 Triple-GEM readout by a CMOS sensor from a transparent windows and a fast light detector (PMT or SiPM)
- Total of 72x10⁶ readout 165x165 um² pixels

First prototype (LEMOn, 7I volume) successfully tested

Fonte P., Breskin A., Charpak G., Dominik W. & Sauli F. (1989) NIM A. 283, 3, p. 658-664.

MPGD for future experiments

- MPDG are proposed for large future experiments.
- Here a shirt list for FCC and Muon collider

Experiment / Timescale	Application Domain	Gas Detector Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirement
FCC-ee and/or CEPC IDEA PRESHOWER DETECTOR START: >2030	Lepton Collider Tracking	µ-RWELL	Total area: 225 m2 Single unit detect: (0.5x0.5 m2) ~0.25 m2	Max. rate: 10 kHz/cm2 Spatial res.: ~60-80 µm Time res.: 5-7 ns Rad. Hard.: <100 mC/cm2	
FCC-ee and/or CEPC IDEA MUON SYSTEM START: >2030	Lepton Collider Tracking/Triggering	µ-RWELL RPC	Total area: 3000 m2 Single unit detect: ~0.25 m2	Max. rate: <1 kHz/cm2 Spatial res.: ~150 µm Time res.: 5-7 ns Rad. Hard.: <10 mC/cm2	
FCC-ee and/or CEPC IDEA PRESHOWER DETECTOR START: >2030	Lepton Collider Tracking	µ-RWELL	Total area: 225 m2 Single unit detect: (0.5x0.5 m2) ~0.25 m2	Max. rate: 10 kHz/cm2 Spatial res.: ~60-80 µm Time res.: 5-7 ns Rad. Hard.: <100 mC/cm2	
MUON COLLIDER MUON SYSTEM START: > 2050	Muon Collider	RPC or new generation fast Timing MPGD	Total area: ~ 3500m2 Single unit detect: 0.3- 0.4m2	Max.rate: <100 kHz/cm2 Spatial res.: ~100µm Time res.: <10 ns Rad. Hard.: < C/cm2	Redundant tracking and triggering

MPGD for future experiments: TPC for ILC

TPC for ILC

Parameter fout z Geometrical parameters 329 mm 1808 mm ± 2350 mm Solid angle coverage up to $\cos\theta \simeq 0.98$ (10 pad rows) TPC material budget $\simeq 0.05 \ { m X_0}$ including outer fieldcage in r $< 0.25 X_0$ for readout endcaps in z Number of pads/timebuckets $\simeq 1-2 \times 10^6/1000$ per endcap \simeq 1 \times 6 mm² for 220 padrows Pad pitch/ no.padrows σ_{point} in $r\phi$ $\simeq 60 \ \mu$ m for zero drift, $< 100 \ \mu$ m overall $\simeq 0.4 - 1.4$ mm (for zero – full drift) $\sigma_{\rm point}$ in rz2-hit resolution in $r\phi$ $\simeq 2 \text{ mm}$ 2-hit resolution in rz $\simeq 6 \text{ mm}$ dE/dx resolution $\simeq 5\%$ Momentum resolution at B=3.5 T $\delta(1/p_t) \simeq 10^{-4}/\text{GeV/c}$ (TPC only)

In addition: very high efficiency for particle of more than 1 GeV.

These requirements can not be fulfilled by conventional wire-based read out. New Micropattern-based readouts have to be applied

Several options under study: GEM, Micromegas, GridPix

GEM

20

MPGD for future experiments: TPC for ILC

- Gridpix option \rightarrow first large application
 - Bump bond pads are used as charge collection pads
- Offers:
 - Lower occupancy \rightarrow easier track reco
 - Improved dE/dx (4% seems possible)
- Needs:
 - ~120 chips/module on 240 modules/endcap ($10m^2$)→ ~60k GridPixels
- Demonstrator of mass production:
 - One module equipped with 160 GridPix (320 cm²)
 - Very promising results: a GridPix-based TPC possible!

MPGD proposed for calorimetry at ILC too

 Higgs boson is turning 11 and we're desperately looking for something else...

 ...experiments at future colliders can do the job!

"It doesn't matter how beautiful your theory is, it doesn't matter how smart you are. If it doesn't agree with experiment, it's wrong." [Feynman]

MPGD: increasing the rate capability

- Separation between ionization and amplification regions
- Short (~100 μ m) ions drift path \rightarrow fast ions collection
- → Higher rate capability
- \rightarrow Granularity, fine space resolution

Construction based on printed circuit board production (photolithography, etching)

The first challenge: disruptive discharges

- Even in device of good quality, when the avalanche reaches a critical value ~10⁷ e⁻ (Raether limit) a breakdown appear in the gas, often referred as 'spark'
 Jimit on max gain for stable operation
 - Example: Gain ~ 10⁴; Ionisation gap ~1 cm
 Avalanche size Q = # of e⁻ primaries x Gain
 - MIP: Q = $10^2 \times 10^4 = 10^6$ → OK
 - p of ~MeV: Q = $10^4 \times 10^4 = 10^8 \rightarrow$ discharge
 - Field emission from cathode strip: Q = $10^4 \times 10^4 = 10^8 \rightarrow$ discharge

The MPGD 'explosion'

 Since the invention of the MSGC the gas detector community has introduced many other MPGD: some very promising, some somewhat less...

The MPGD Zoo of the 90s

- Today the MPGD family includes a large number of detectors
 - Well established technologies adopted in HEP experiments
 - New ideas, R&D for future experiments or specific applications

Gas Electron Multipliers

GEM

- Thin (~50 µm) metal-clad polymer foil chemically perforated with high density of holes (~100/mm²)
- Preamplification and charge transfer preserving the ionisation pattern

- GEM foils in cascade → high gain before discharges
- Multi-stage → triple GEM

MICRO MEsh Gas Structure

- Parallel-plate with small (~100 µm) amplification gap
- Thin metallic mesh separating the ionisation and amplification regions
- Rate capability and energy resolution of parallel plates

- Standard (non-resistive) Micromegas successfully used in HEP experiments
- Still with non-negligible discharge rate

- The introduction of a resistive protection (R&D for ATLAS) permits to largely suppress he discharge intensity → spark-immune Micromegas
- Opened the road to the development of resistive MPGD

